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By
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ABSTRACT

In this paper the special theory of relativity is extended to include the vectorial and scalar
transformations of kinematical and dynamical quantities associated with bodies whose proper or
rest mass is variable with time (i. e. rockets). Besides the known transformation formulas for
force (or momentum flow rate) the general transformation formulas for power (or total energy flow
rate) are given for the first time. All text books on the theory of relativity introduce the classi-
cal definition for the power which is an overspecification. It would be correct only when the rest
mass is not changeable with time. This assumption is always fulfilled when applying the theory
of special relativity to fast moving electrons, atoms, or nuclear particles, but it is not true for
fast moving rockets. Generalized relativistic conservation laws of momentum and total energy
(mass) are derived.

An application of relativistic dynamics to rocket propulsion gives the data of an arbitrarily
accelerated rocket in free space (without external forces) in the system of a stationary earth
observer, and in the rest system of an astronaut centered in the moving rocket itself.

Two special cases of rectilinear motion of a rocket with constant exhaust velocity are
treated:

(1) constant thrust acceleration (hyperbolic motion)
{(2) constant mass flow rate or constant thrust

Tables with numerical values for dimensionless flight parameters will be given for both cases.

In this report Einstein’s general theory of relativity (gravitational theory) is applied to the
motion of an artificial satellite revolving in an arbitrary orbit around a central body and the time
dilatation effect for this satellite is given. This relativistic perturbation theory is based on
Einstein’s general field theory, differential geometry of non-Euclidean spaces, potential theory,
and celestial mechanics. The short periodic perturbations are excluded by using time average
values over a revolution. The secular and long-periodic (non-relativistic as well as relativistic)
perturbations of the osculating orbital elements, which represent deviations from the elliptic orbit,
are presented here for the case of a rotating, non-homogeneous, oblated spheroidal central body.
This is an extension of the work of Einstein (1915) who considered motion around a mass point
as well as the work of deSitter (1916) and, independently, of Lense and Thirring (1918), who
treated the relativistic motion around a rotating, homogeneous, spherical central body, omitting
the terms due to the square of the angular velocity.

A formula for the relative difference of the time rates of a satellite clock, compared against
a standard earth clock (time dilatation effect) is derived for orbits of any eccentricity and equa-
torial inclinations, thus extending the paper of Winterberg (1955), Singer (1956) and Hoffmann
(1957).
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ASTRORELATIVITY

By
Helmut G. L. Krause

PART |
RELATIVISTIC ROCKET MECHANICS

SUMMARY

In this part the special theory of relativity is extended to include the vectorial and scalar
transformations of kinematical and dynamical quantities associated with bodies whose proper or
rest mass is variable with time (i.e. rockets). Besides the known transformation formulas for
force (or momentum flow rate) the general transformation formulas for power (or total energy flow
rate) are given for the first time. All text books on the theory of relativity introduce the classi-
cal definition for the power which is an overspecification. It would be correct only when the rest
mass is not changeable with time. This assumption is always fulfilled when applying the theory
of special relativity to fast moving electrons, atoms, or nuclear particles, but it is not true for
fast moving rockets. Generalized relativistic conservation laws of momentum and total energy
(mass) are derived.

An application of relativistic dynamics to rocket propulsion gives the data of an arbitrarily
accelerated rocket in free space (without external forces) in the system of a stationary earth
observer, and in the rest system of an astronaut centered in the moving rocket itself.

Two special cases of rectilinear motion of a rocket with constant exhaust velocity are

treated:

(1) constant thrust acceleration (hyperbolic motion)
(2) constant mass flow rate or constant thrust

Tables with numerical values for dimensionless flight parameters will be given for both cases.



.  RELATIVISTIC ROCKET KINEMATICS

A. General Lorentz Transformations

The special theory of relativity is based on two principles:

1. The postulate of relativity. It is impossible to measure or detect unaccelerated translatory
motion of a system through free space.

2. The postulate of the constancy of the velocity of light. The velocity of light in free space
is the same for all observers, independent of the relative velocity of the source of light and the

observer.

Using these postulates, A. Einstein (Ref. 1) derived the Lorentz transformations (trans-
formation formulae between two reference frames in relative uniform motion to each other) previ-
ously detived by H. A. Lorentz (Ref. 2) and H. Poincare (Ref. 3) on the basis of the electron

theory.

Two coordinate systems S and S’ moved against each other with a constant system velocity,
(where v is the velocity vector of the system S’ relative to S and v’ = — v is the velocity vector
of the system S relative to §’) have origins 0 and 0°, respectively, coinciding at the time t=t =0.

The transformation of a position vector t = (x, y, z) and the time t in the system S to the corres-

onding quantities r’=(x’, v’, z") and t” in the system S’ is given by the general Lorentz trans-
g9q Vo y g Yy 4

formation (without rotation) in a paper by G. Herglotz (Ref. 4), namely

r’=r+v[<i —> r-; "LJ; t'('.=l’<t" r2v> (1)
a v a a c

t'+ vt = r—-v[:(l—a) r"]

12

feriey <_1__> v +_t_’ ) t-i<t’+ r*.v)
a v?2 a |’ a c? (2)

f—vt =t'—v [(l—a) ! -Zv]

or

v

where ¢ is the light velocity and

a=yl-(v/c)2 <1 ; 1-a? =(v/c)? 3)

All these transformations satisfy the equation

s2 =(rer) ~c2 2= (¢’ t") — c2t’2 (invariant) (4)

The inverse equations (2) follow from equations (1) by interchanging (r*, t) and (r, t)



and replacing v by v'=—v.

The general Lorentz transformation with rotation (when the Cartesian axes in S and S’ do
not have the same orientation) are

Dr’=r+v[(—1——1>f—v——L] (5)
a v2 a
pre L (t_ _’1>
a c?

where D is the rotation operator (a tensor or matrix). Due to

Dvi=—~v ; v'==D'v 6)

r’=D‘1r—v’I:_1___ r-v =._th (7)
a v2 a

.1 rv
S 7}
r=Dr’-vl:<1—— )r-v ——t—-] (8)
a v ga
1 /7., ey’
()
because of the identity

1 ry t 1 1 iy’
<— - - ={— - - — (9
a v: g a v2 q

These equations also satisfy equation (4) . For inhomogeneous Lorentz transformations (where
the origins 0 and 0”do not coincide at the time ¢ = t"=0) the distance s in the space-time world
will no longer be invariant. The invariant quantity for these general transformations is now the
square of the four-dimensional line-element ds? = dx2+ dy? + dz2 — c2d:?2.

there is

and the inverse relations

Special Lorentz transformations (where the constant velocity v is in the direction of the
positive x - axis, thus v=[uv, o, d}) are

, x—ut x‘+uvt’

x’=-——— = x cosh ¢y ~ ct sinh ¢ % =————— =x"cosh ¢y + ct’sinh ¢
a a

y'=y i z'=2z y=y ', z=2’

, ct—-xv/c . ct’'+ x"v/c , .
ct’= ————— = ctcosh i — x sinh ¢ ct = —————— =ct’coshif+«x smhl/;

a a
where
1

= cosh™! (1/a) = cosh -1 = tanh! (v/¢c) (10)

VI=(v/cf



B. Transformation of Particle Velocities

The motion of an arbitrarily moving particle will be given in the system § by its instantane-
ous position x = x (t), y =y (8, z =z (t) or¢ (z) The particle velocity vetl:tor isu=dr/dt=
- (ux . ) = (%7,%) and the velocity itself is given by u = (u2+ uZ+ u2) 2. Corresponding
quantities in *the System S’ are marked by a prime.

By differentiation of eqs. (1) and (2) one obtains the transformation formulae for the
time elements and for the Lotentz contraction factor a:

__11 AN dt_ll u'v

e\ T ) T e Ut e (D
usv u'-v v2

Q‘HX%&‘W‘PZ (12)

Transformation formulae also follow for the local velocity vector of a particle in the reference
system S and in the system S’ in relative uniform motion with constant velocity v to §, namely

b dr’  dedr av+v {(1-a)(uy) /22114 (13)
dr’  dt/dt 1~ (usv)/c? ’
or
_dr _ dr/di’ au’ +v {(1-a)(uiv)/p2 +1} (14)
i PR PV FU T+ (wev)/c2

These formulae are the basis for the relativistic kinematics. By squaring eqs. (13) and
(14) there resules

1 —(u/cp ,

()_1-a2 gl w'ge (15)

=

u\ 2 1~ (u"/c)?
& - (‘ﬁrvéfl‘“<c 16)

14 9°v?

2

combining eqs. (11), (15) and (16) yields
_di’_ 1-—(uv)/c2 _ a _ \/1—(u/c)2 ) 17)
dr a T l+(wiv)/c2 T V1 —(uc)? '

and thus

dt\/l—(u/c) = dt’ \/i—(u’/c) = dr (invariant) as)

where 7 is called the proper time measured in a system centered in the moving particle.
For u || v respectively u’|v eqs. (13) and (14) yield the usually quoted addition theo-

rem of particle velocities

, Uu—-v u't+v (19

s e (1 7= R e (PEA™ )




(13) and (14) vyield
(20)

For u| v, respectively, u’l v eqs.
U'=qu~V ; U=qu’'+v

For |u| = ¢ (photons) there is u”= ~ u, while for u = v there follows u "= Q (transformation to rest)
meaning that the coordinate system S5’ is centered in the particle itself (rest system §, ).

For the special case where v is in the direction of the positive x - axis, eqs. (13) and

(14) give
’ llx—‘IJ N ’_ au:{ N o au,
%y = 1-(u,v/c?) ’ “z T 1 ~(u v/c?) (21)

“x = l-(u_v/c? '’

or
Y ugt VL auy . au, (22)
" l+(ujv/e?) ° Y l+(ulv/c?) 2" 1 +(ulv/c?)
Taking scalar and vector products of eq. (13) with v produces
oy = uv-v?2 o7 v| = a |u x vi (23)
T 1=(uwv)/c2’ VIS T () /c2
Introducing the angles § = ¢ (u, v) and 0" = 4 (v’, v) the above equations can be written after
division by v, in the following form
u’cosf’ = ucosf-v ; u’sin@ = ausin @ (24)
uv cosf uv cos @
1 - ———— l- —————
c2 c?
and thus
. £(u cos §—v)2+{qusing)2]1/2 _ Ll: 2 (U{z_t) cos 0 +7Q)ﬂ/z_4) 2: (1_J/c;) 2 sin24]1/2
B 1 #v cos @ - 1 uv cos 6 (25)
- c? - c?
and
a sin 0
(26)

tanf’= cos 0 —(v/u)

The inverse equations follow at once by interchanging the primed and unprimed quantities and re-

placing v by — v, thus
ucos@:” cos}@ +tv - ; usin@ = au ,sme ~ (27)
u’vcos O uv cosf
1+ — 1+ —
c? c?
yo lu7cos0s )2 lou’sing )21 (142 (w/u") cos0”+ (v/uPm (v/c)2sin2 ] 2

14 2 v cosO’ u’v cos O (28)

+ =2 1+ =2
(29)

tan 6o — asing’
no= cos@ + (v/u’)



’

Applying eqs. (24) and (26) respectively eqs. (27) and (29) to photons (u = u”"= c)
the relativistic formulae for the aberration of light follow:

cos 6 = cos 8 —(v/c) . sing’e asing can 67— a sin 0
° " 1—(v/c)cos @ °’ A (v/c) cos § T cos O—(v/c) (30)
or
cos 0% (v/c) . a sin 87 . asin @’
0= Thwdeost * 0" Tt ces s b =07 s e (/o) .

A more rigorous proof can be derived from the invariance of the phase of an electromagnet1c
wave. This principle also gives the relativistic formula for the Doppler effect. If v is the
frequency, w the phase velocity, n the wave normal or the unit vector in the direction of the ray,
and [k = (v/w) n] the wave propagation vector, the invariance of the phase can be expressed by

nr (32)

v’ —(k 8’) =vt—1ksr) or v <t'—

Eliminating r” and ¢ by means of eq. ( 2) and comparing space-dependent and time-dependent
terms respectively on both sides of the above equation yields the transformation formulae

, 1 kv v’ v+ (kv
k=k +v[<a > y2+_a-?]; Vo= (33)
The elimination of r and ¢ by means of eq. (11.2) leads to the inverse relations
;o 1 kev v , v-kwv
k=k+v[7z——1 —;—2~a—CZJ; vis —— (34)

Introducing the direction angle of the wave normal § = ¥ (n, v) the transformation formula for the
frequency can be written

,v=(kev) 1 - (n.v) /w 1—(v/w) cos@
Vs EESS ey Sy e (35)

Taking the scalar and vector products of k “ with v produces

(kev) —v (v/c)2
. . . or = —
a w w a

kv =
and

x v

lk“x.v| = |k x v|

These equations can be written

e ’,

v tos B —(vw)/c? v' .
~cos 8'= =— ) s —, sinf =
w a w

gx

sin@ (36)

Dividing both equations gives the transformation formula for the direction of the wave normal

, a sinf
tan 6’ = cosO — (vw)/c? (37N



Squaring and then adding both equations produces

Y~ Y [sin20 + {cos 0 - (vw)/c?}2/a?] V2
w w
Eliminating v /v yields the transformation formula for the phase velocity
p - ) 1-(v/w) cos 0
Y =¥ [a2sin20 + fcos 0 —(vw)/c3}2] /2
w—v cos 0 (38)

v . 2 vw vw\2 1/2
1- —E—sm6> -2 ——6—2' C056+(—C-2

The inverse transformation formulae for the wave characteristics are

1+ (v/w’) cosf’ _ a sin@” (39)
Vo, ; tanf = cos @+ (vw?)/c?

wew ... o LH(ww)cosd’
= [22sin20”+ {cos 8+ (vw )/c2}2] 12

w’+ vcosf’ (40)
vw'\2 1/2
C2

A comparison of eq. (26) with eq. (37) and eq. (38) witheq. (25) shows thatu = c2/w
and #” = ¢ /w’. Therefore velocity and direction of a particle are transformed in the same way
as corresponding quantities for a wave with phase velocity w = ¢2 /u. DeBroglie used this re-
sult in his wave theory of elementary particles.

Applying the above mentioned formulae to a light source in vacuo (w = w’= c) the follow-
ing transformation formulae result

- _1—-1i—c056 . _V,_1+-3--cose'
v =v ——-C———a ;o v= -—C———a (41)
v
cosf - — . .
cos@’= — S . sinf’ = _asin§ . tanf’ = _asin§ (42)
1-ZLcosd 1~% cos@ cosf —
c c
cos6’+~i— sin §° sin
cosf= —— 5 . sing= 2327 ; tanf = 2207 (43)
1+ =2 cos 9’ 1+~ cos @’ cos 9"+ L
(o} C Cc
’ v 6 2
an Lot a9 10 % ocosgr . 2 (44)
2 v 2 c v
1—-? 1——c— cos @

It is easy to derive the classical aberration formula from these equations, namely



sin(@’—0) =sin@ " cosf —cos B’ sin O

Y _(l-a)cosd
C

= sin 6
1-2 cos@
c
(1 -a)cos @+ = —
=sin 8’ ¢ L — L° r’cos@’
1+ Z cosg” ¢ (r’v/c) sin 0
‘C‘. ‘g rv/c) sin _ f .
0'-0 <= ——— 77— = = sin 0
For —E & 1 (a=1) the above mentioned formulae yield
P v, , v,
@ -6~ - sinf’ = <sin@ , (45)
c c
the same equation which follows directly from the figure.
In discussing the Doppler effect there are two special cases
a) the usual longitudinal Doppler effect: n || v (6 =6"=0)
4
1- % 1- %
visy =v <v (46)
v
a I+~
c
b) the transverse Doppler effect: n v (8 = 127— : 0'=m~cos~!2 - 7 _sinlq)
(o}
, v v
vV = — = e >v 47
a V1-(v/c)2 (47)

The decrease of the frequency, v’ , of the emitted light corresponds to a shift towards the red
in accordance with the time dilatation of a moving clock.

It is useful to have available the transformation formulae of certain other quantities. Using
eq. (44) the transformation formula for the solid angle d(Q = sin 6 d0 do

v N2
dQ’ d(COS@’) a2 (1 + -i COSG ) (48)

(1-

dQ) ~ d{(cosf)

cos 0)2

ol

The transformation formulae for the amplitude A, the volume V of a laterally bounded, finite
wave and the total Energy E=1% A2 V  of the wave are

v
AT v B 1——C~cos€ .
v E v a ) 49

v
1+ = cos@’
c

The total energy density u = E/V =1 A? will be transformed according to
8



u R
L _(_A_')z __<ﬂ - < a 49 (50)
u A a 1+ :—cosa' daQ’

2 dQ = udQ)

thus

Due to the transformation formula for the number density of photons D = u/by:

D’ _ (_u_)(z) _Aa_ v (51)

the number of photons N = D.V = E/bv is a telativistic invariant: N’=N. Thus the relativi-
stic transformation from one to another coordinate system is not connected with a creation or
destruction of photons.

For practical applications of the relativistic Doppler effect and aberration formulae, it is
more advantageous to replace the angle 0 between the velocity vector v of the light source
(relative to the observer) and the actual direction from the light source fo the observer by the
angle ® = @ + r between v and the actual direction from the observer to the light source. Like-
wise the angle §” has now to be replaced by @“= 6’ + = for the corresponding apparent angles.
Furthermore, v should be the proper frequency v, of a light source or a transmitter while v is
the frequency measured by an observer or a receiver. The eqs. (41) to (44) therefore yield

(ﬁ=v/c;a=\/m

_ 1+Bcos® ~ 1-BcosB’
v =v —————\/I_Bz i v=y, ————\/———-—1_62 (52)

cos®@+pB . . o, 1-p*sin@® . V1-p*sin®
1+Bcos® ’ sin 8"~ 1+BcosB® tan ©’= cos O + (53)

_cos®'-B . o V1-B2sin@ _ J1-B2%sin @’
cos ® = 1-Bcos®" sin @ - 1-Bcos®” tan © = cos®' - (59

@/ 1__ @ ’ 1_ 2
tan—2—=»\/ﬁ-% tan?;1-,8¢°$®=‘1+—3%9— 3

cos B’ =

®=0’= 0 (receding space vehicle):

[{_
viv, = 1-8 - =2 _ 1-p <1 (shift to the red)
a +

V/Vo I S = % > 1 (shift to the violet)

O=0"=7 (approaching space vehicle):

1+ 1
vy = B - lf - It[lgi‘ > 1 (shift to the violet)




The above mentioned formulae also apply to the case where the (earth) observer is moving
with respect to the fixed stars and the light source (fixed stars) is at rest. It is only necessary
to interchange primed and unprimed quantities and to replace v by -v.

An illustration of the before mentioned formulae is shown in the following table:

Table 1. Aberration and Doppler Effect

’ . Brcosf __a-pnvz
0= cos 1 B cos 0 Vo= T7 B cos @
6 B=u/c B=v/c
0 0.5 0.995 0 0.5 0.995
0° 0° 0° 0° 1 0.5773 7 0.0501
30 30 17.588 1.537 1 0.6043 0.0537
60 60 36.869 3.311 1 0.6928 0.0668
90 90 60.000 5.732 1 0.8660 0.1000
120 120 90.000 9.912 1 1.1547 0.1990
150 150 139.792 21.166 1 1.5274 0.7230
180 180 180.000 180.000 1 1.7321 20.0000

C. Lorentz Contraction and Time Dilatation

Two important applications of the Lorentz transformations can be made:
1. A measuring rod at rest (v = 0) relative to the system S has the length Ar=r,~r; . In the
system S’ moving with the velocity v relative to § the two end-points of the rod have a relative
vélocity v =—v and simultaneously

[At' = ty —t/=0 or At= (Arv)/c?= {(Arv)/v?} (1-a?)]

have a distance

Ar'=r] —r] =Ar+v l:(i——l Ary —~A—t:f= Ar—v [(l—a) Ar-v] (56)

v a v?
For Ar || v thereis Ar’= qAr (Lorentz contraction) while for Arlv there is no contraction:
Ar’=Ar
2. Two events observed in the same point (Ar = r, — r, = 0) of the system S in the time interval
At =ty—~12; , appear in the system S’ in the time interval A:" = At/a (time dilatation), however,
now in the distance Ar’=-vAt/a=-vAt’

Thus, if [, is the rest length of a rod, the length of the moved rod is

I=I V1-(v/c)? (57)
and, if 7 is the proper time of a clock which is at rest, the time of the moved clock is

t= ———T— (58)

VI (002

so that the moving clock will lag behind one at rest.

10



D. Transformation of Particle Accelerations

Differentiation of eqs. (13) and (14) gives the corresponding transformation equations for
the acceleration:

& duvdt (1~ Y (v )
’ 1+a
0 - (59
dt’ dt/dt ( ')
c2
or
dv  du/dt’ a-v Q,q v >
a- - = a2 : c? l+a (60
dt di/dt’ <1+ "'v> :
c2

Some special cases will be considered now. For al|lu there follows

avy v
. 2 1+a

Q— uov)

and for aljullv there is

, a®a a 3
a= wv\3 a
< - ?> l —’Ill//C 2

Setting ally yields

and setting alv (a-v=0) gives

’ az a 2
A= (uew/c 2T <1 (u-v)/c>

Apother case, vlv (uev=0) provides

. asv v
a’'=a? c:+{—c2 (u-— 1+a>]

For the special case where v = (v,0,0) is in the direction of the positive x —-axis the eqs. (59)
and (60) yield

, ., ada ada’

R ¢ ey IR S | R/ T
. @ ay a(a v/ Puy alay _ aXal v/c?)uy
aY: “Q-z u/c"z)2 (l—u wc2)3 ;A=Y= A +ul v/c%’ (1+u; v/c?)3
rogro_ata,  dlaychu, a2a _ a*(af wc?)u}
%= "0« 11/02)2 (l —au v/c2)3 A e v/cz)2 QL +ul v/c?)3

11
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A very important case is obtained by putting u = v or u”= 0 (transformation to a rest system).
This means that the primed system is centered in the moving vehicle_itself. The corresponding
time ¢’ is called the proper time r. The quantities v = z and a =1 - (v/c)®=\/1~(u/c)?are
now functions of the time t. The eqs. (59) and (60) ate now

au v U
a9+ —7 1 aa + — (1-a)v

, c +a u-
a’ = -3 — = =3 (61)
eoet o 2 gt ] - S0l

and thus
aw = &Y (63)
PE

There are two special cases. Namely, forallu or o |lu there is

a’= u/a3 (64)
and for @ u or a’ v there is
0,= u/a2 (65)
In the section on dynamics there appears the function
4/ v ) - a + g v
dt \y1—(u/c)? (1 - /2 )12 (1-u2/c2p2 c2 (66)
a2a+ =2y #a+ 22 (1-ad)u
c2 u2

where a = du/dt and u du/dt =vedu/di = asi has been used. Using eqs. (62) and (63) eq.
(66) can be written

d ( u > a ey U , a4~ v
=)= — + — — =aa’ 4 =
dt \W1 —(u/c)? a c? ad c? l+a (67)

= qga’ + (@ -a/a?) = (1+a)a’— 97
a

For a|u ora’||u there is

d u

ol . 3 =a’ 68

d <\/1'— (a/c)z ) o/a’ =0 ©8)
while for aj v or a’] v there is

—d—<——u—_>—a/a-aa’ 6

dt \VI=(/c)z / (69)



2. RELATIVISTIC ROCKET DYNAMICS

A. Definitions
In accordance with the principles of relativity that the theorems of conservation of mass and
momentum hold in all sets of coordinate systems in uniform relative motion (using the more
complicated Lorentz transformations instead of the Galilean transformation equations), . it is
necessary to modify the older Newtonian mechanics by assuming that the mass of the particle
depends on its velocity.

If m, is the proper mass or rest mass of a particle moving with the velocity v the following
definition equations hold. The mass is given by

me o (70)
This yields, for the momentum vector,

p=mu= e Y (71)
The total energy is introduced by

E=mc?2=

[+] — o
VI=u2/cZ . JI-ul/c? (72)

where E_ = m, c?is the rest energy. The difference between E and E_ is the kinetic energy of
the particle

T=E~E =c?(m~m, )--m c2 1> =%2 u? (1 + 3/4 u2/c2 4001)

\/l __uZ;C2

The force is defined in relativistic mechanics as the momentum flow rate

dp d

F=7t_=d_z("=dt7T’;i7"__T_> (73)

Tolman (Ref. 5, p. 46) says that *‘the inclusion of m, inside the bracket makes the expression
applicable also in cases where the proper mass of the particle varies, as it might, for example,
from an inflow of heat.”” In 1934, he probably did not have in mind an application to fast-moving
rockets expelling proper mass (exhaust gases). As in the author’s paper of 1955 (Ref.8) where
the Special Theory of Relativity was extended to systems with timely changeable rest masses
(rockets), the proper or rest mass m, will be treated as a function of the time ¢ (but not of the
flight velocity u) in this paper. Thus the last equation yields

.‘il{_ i’.n_u-—mq i’?_ — L.b‘&_ é_ d_ _7.”_9__ ]
dt - ta s VI = uz/c2 it @ T —wu2/cz.

showing that in relativistic mechanics the force F and acceleration a will generally not be in
the same direction, as it was in Newtonian mechanics. The power or work done on a particle per
unit time will be defined here as the total energy flow rate

(74)

P dE @__ d m c2
TR e T r_—uz7—r> dt<\/I_27T 75
B. Transformations

The general Lorentz transformation (eqs. 1 and 2) provided the relations between the
space and time coordinates of system § to those of system §”. The corresponding transformation

13



equations for velocity and acceleration were derived from them. It is very important to possess
the transformation relations for certain other quantities of particle dynamics. From eq. (70)
there follows

m \/m =m’ \/i_—TWL m, (invariant) (76)
The proper time element (dr or dt, ) is given by

dt \/_1—_112—7C—2 = dt’ \/l_w = dt, (invariant) a7
A division of both equations shows the following simple relations

dt dt’ dt,
L2 %% Gnvariant) (78)
m m mo

By means of eq. (17) the eqs. (76) and (77) immediately give
m__ dt —u%/c? a . 1+ (uv)/c2? 1+ (uv)/c2 79)
m dt” Al -u2/c?2  1-(uw)/c? a A/ 1 —(u.v)/c?

a= yi=v2/c2

The transformation equations for these quantities of particle dynamics are,
(1) for the mass:

, 1+ v)/c?2 m’+ (piv)/c? ,- 1- (wv)/c2 m—(pv)/c?
m=-m = - sm =m = (80)
a a a a

(2) for the mass flow rates

dm _dm’ 1+ Wwiv/c? m’gdv’ vN_ dn’ . (atV)/c?
dt  dt a * a <dt ‘C‘2>_ dt'+m 1+ (u’sv)/c? (81
or
dn’  dm . law)/c?
7N TR W (PRV V) (82)
thus
, (avv)/e (awv)/ 3 a’v m\ 3
—m : _ ) (83)
1+ (u'v)/c? 1-(uv)/c?2 '  av m’
(3) for the momentum vector:
mav’ + mv {1 —a)(v’v)/v2+ 1} . Y u'v ]
p=mu= T (0v)/c 2 - = mluTem ;—li(l—a) 2 +1
thus
co oYl PV i’]_ ., v W/ +a)+E’
P—P+a[(1 a) vz T2 TPt a (84)
or
. v psv E v (pv)/(1+a)- E
P““Zﬁl‘“’?"?}"”“z a (85)
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(4) for thetotal energy:

E=me2=m’c? 1+ iv)/e? E"L(P,'V); E" = E—{p-v) (86)

a a a

(5) for the force (momentum flow rate):

E’+ L[lf__"’ N 4E’
F_dp_ dp/dt’  aF’+vi(l - a)(Fi)/v2e (dE/dt)/ e} 47 T AU sat dr 87)
T dt  de/de T 1+ (uiv)/c2? - 1+ {(urv)/c?
or
e aF +v{(l —a)Fewv)/v2 ~ (dE/dt)/c 2} . aF + —z—z[—l'—:—;}z— %Ié]
- 1-A{uvev)/c? - 1 - (usv)/c2 (88)

(6) for the power (total energy flow rate):

dE _ dE/dt’ dE’/dt’+(F“V)  dE’  dE/di—(F.v) (89)
dir ~ dt/dtT T 1+ WAaw)c2 g 1={(uev)/c?

Instead of differentiating eq. (86) it is also possible to multiply eqs. (81) or (82) with ¢?
yielding

GE_aE' | wat)  dE_dE mlew) ©0
a —ar T 1+ @w)/c2 ' dt7 = dt 1 = {uev)/c?

It is .easy to see that the eqs. (89) and (90) are the same since

d dm ., d ,s v odm’
F=—d—t(mu)=ma+ﬂu,F=7‘T(mu)=ma + 7Y oD
The transformation eqs. (89) are not given in any standard book on Theory of Relativity, al-
though they follow from the definition F = dp/dt or F’= dp’/dt’ See, for example, the books
of Tolman (Ref. 5) and Moller (Ref. 6) on Theory of Relativity. Instead of eq. (89)a further
definition is introduced, namely

dE/dt = (Fw) or dE/dt"= (F%u”)

That would mean that in any system the change of kinetic or total energy per unit time is equal
to the work done by the force per unit time. However, this is an overspecification.

Identifying the system S’ with a rest system S, (u'= 0 ; u = v) the definitions dE/dt = (F.u)
and JE’/dt = (F%’) are correct only when the rest mass is not changeable with time. This
assumption is always fulfilled when applying the Theory of Special Relativity to fast moving
electrons, atoms or nuclear particles. However, this is not the case when applying it to fast
moving rockets, expelling rest mass (exhaust gases). In the general case, these definitions are
wrong and have to be replaced by the .correct transformation formula eq. (89) for the power,

C. Transformation to a Rest System
Putting u’= 0 (u = v) in the before-mentioned transformation equations the following rela—
tions will result when the prime is replaced by the subscript 0 (to designate that quantities
belong to the rest system):

m_E _4& 1 1 (92)
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and for the mass flow rate

dm dm, a_ . . dm dm  m au
—d,=dt°+’”o(—°7>'ﬁ=f‘?.c_2) (99)
thus
asv
% = T3

The force is transformed according to

_ Fw 1 4EJ] _ v [Fw dE (¢ 94)
F-—aF°+U [(1—a)—nuT+ Cz*dt—o'ﬂ—aFo-l—Czlm-i-'d—t:-J
F u F.u 1 dE F u F.u dE
- —  — —g) = = | 2 | — - = 95
Fo a +a2[(1 a) u? c2dt} a +a262':1+a dt} 95
thus
(Few) = (F, ) + (1=a? ZEa () + w2 To ( 96)
The transformation law for the power is given by
dE E
5= %z—l +m, (a ) =%€Q +(F, +v) (97N
dE dE m 1 |4dE
= — - — (gw) = —|==~1(F. 8
szg dt az(GU) azlidt (Fuﬂ ¢ 98)

The egs. (96), (97), (98) were already given by the author in 1955 (Ref. 8). Writing eqs. (61)

and (62) as
e I
a = —011_3[(10 + ﬁ u—;l;—ﬂ = :1!—3— &10 + (1-a) (au-2u> u} (100)

and using these transformation laws for the acceleration or the proper acceleration, respectively,
together with eqs. (92) and (93) in the definitive equations for the forces

d dm
Fzgt—(mu)=ma+gt—U: Fozmouo

(101)

then the above-given transformation equations (94) and (93) are obtained. Dividing egs. (97)
and (98) by c?2 yields

dm  dm F . dm 1 {dm Feu
_—_ = —9 —0 . —0 - — —_— - ——
dt dt, ez dt, a? Ldt c 2J (102)

The first of these equations can be obtained directly without using the transformation equations
by differentiation:

dm d ;m m_ /G 1 dm a - dm F .0\ dm
an _ = - o (2T = 2, o "o - (1o~ o
dt = dt (—a—q) a 3(c2)+ a dt m°<c2) + dt, c2> + dt
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Instead of splitting up the force, F, in one part proportional to the acceleration a and
another part proportional to the velocity u (see eq. 101), F can be subdivided into one term
due to the change of the rest mass with time and the rest term Fi identical with F for parti-
cles with constant rest mass.

v dm dm
= — o - Z o 103
& ( > °dt M R el (03

Due to eq. (67)

d v a awu\ u a a_su a_-u u
717(;)=;+(c2>ﬁ=‘;+<ﬁ7 v=ad,+ 427(1“)

thus
d v d (v F v dm
F*= mojt<‘———,1___w.27?z>=moﬂ(—a—>=mo+(——°c—f—>u—mu+ zt——- > (104)
and
. u F v
F*=aF° + =aF, + 1-a —o—ju (105)
a u
Multiplying the last equation with u yields
dE dE
=(F, w) =2 - 106
(F*'U) (Fo U) t H—t—: ( )

Putting eq. (106) into eq. (104) gives the equation of motion in the form.
Fiou
- F*~< 22 u (107)

Compared with the corresponding equation in the book of Mgller (Ref. 6) eq. (107) has the
additional term - a2 (dm  /dt )u on the right side and the advantage that it is also applicable
to systems with txmely changeable rest masses (rockets). Introducing the force F, or the
Newtonian force F, , into equation (107) yields [by means of egs. (102), (105) and (106)]:

m g____ F_ 9m _ [ F-u dmo}u (108)

d F . F oo\ |
m d—‘t’ a [Fo-<—27) 1:—4 =a[F°—(1-—a) "Qu_2>‘j (109)

In the special case F | v there is

and

Fe=F ; F=F + 52 v, ma=a?F or a/ad= aqa, (110)

D. Application of Relativistic Dynamics to Rocket Propulsion
In the following, the data for a rocket and its exhausted gases will be marked without a

subscript in the system S of a stationary earth observer and with the subscript 0 in the rest
system S_ of an astronaut centered in the moving rocket itself. Applying the transformation
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eqs. (13) and (14) for particle velocities to the exhaust velocities v,  in the system §,
where the thrust is generated and v, in the system § of an earth observer the following formu-
las are obtained:

v o ot {(1 —aluig)/u? =1} avgr viluev,/c2/(Q + o) —-1} (111)
e - (u.v )/c2 1-- Usv )/ c2
_ave+tull —a)uw )2+ 1} av, + uf(uv, /c A1 +a) +1} (112)
Veo = 1+ (vev,_)/c2 - 1+ (uev,)/c2

where the relative velocity between the two systems is v and a=v1-22/c?2 Eq. (79) can
be written, for this case, k

1-12/c? a 1+ (wev)/c?2 1+ (uev,)/c?  dm, (113)

1- 112 Jcz -—~(u-vm)/c2 - a j\/1—~(u-\'g°5/c2 T dm

where dm and dm, are the elements of mass flow after ejection in the two systems § and
S, , respectively. The element of mass flow before ejection

dm\J1—-v3/c? = dm \[1~-y2 /c?=dm} (114)

is invariant. The mass flow rate in the system §, of the astronaut is

dm sy
=— —0 =
Y | e W 1s)
eo
where p¥ = —: dm}/ds, is the mass flow rate in a system in rest relative to the exhaust gases

of the rocket. The cortespondmg mass flow rate in the system § of the earth observer is

d 1 —(uev )/c2? oy F v
A m allo 'F-t YN =y, (1 V%) o — <_a_> (116)
dt \/1—v27c2 \/1—ve§7c2 c? c?

in accordance to eq. (102) . The quantity

F = _— pE v

o = Mo Veo W (117)

is the primary thrust force of the rocket in the rest system S, where the thrust is generated.
The corresponding thrust in system § which the earth observer would measure is

Fpv,= _apive - *1;(“_"@)_/"1,, (118)

Vi-vz/ca e mozser e

or using eqs. (111) and (117)

(1 = a)uwvy Va2 =1}
F- ,l*ﬂnw{\/l__:é%”. - aF, [(1 uJ (119)

in accordance with eq. (94). The results can be summarized in table 2.

An 1mportant quantity is that part of the total energy of the exhaust gases which can be
converted into useful work (kinetic energy). In the rest system S of the astronaut this conver-
sion factor, first introduced by E. Saenger (Ref. 9), is given by

(dE,/dt,) —(dE% /dt)) _ po—p¥ _ VI=z /et
y= dE,/dr, he LTI 420
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and thus

y,/c=y1-T =92 = yA2 ) (121)

Putting a=m_/m into eq. (113) gives

— = (122)

m m c2

dm dm,, <1 Uy,

The equation of motion is

d du dm dm
— = Z uv=F= 123
dt(mu)mdt+dtUF dt ° (123)
or
m B (v
dt e e’
thus, using eq. (122),
du =-(v +u) dm =~ (v, + v) < - E—VZﬁ\) dmqy
m c m,
Applying eq. (111) then yields
du = —- (1 . ) *Veo dm 124
U=—a |v - -a 22 u (124)
Considering the special case v, ||v equation (124) reduces to
gy L e L A (125)
m, Voo @2 Vg, L—u2/c2

which can be easily integrated for constant exhaust velocu:y Let M, be the rest mass of the
rocket for ¢t = 0(z = 0); the integration yields

h M - S (1/c).du ___c 1x+u/c
" z/e‘:'~f‘1—z¢2 €2~ 2y, la 1-u/c

o

thus
c c

1 _mg_ (lowe\ P M (leu/c) T (126)
r M 1+u/c ’ m, 1—-u/c
where r is the mass ratio of the rocket. The inverted formulas are

. 1-{(1/)%e/c  ;2Ve/c ] (127)
¢ 1+Q/nN2ve/c — ;2ve/c ]

The eqs. (126) and (127) represent the fundamental relativistic rocket equation derived by
J. Ackeret (Ref. 10) in 1946 from the conservation law of momentum. Using a =1 ~u2/c?2;
u/c =y/1-a2 eq. (126) can be transformed into

l m " a
T M, T (1_+\/— T-a? ) (128)
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This formula was found by R. Esnault-Pelterie (Ref. 11) in 1928 from a relativistic treatment
of the special case of a rocket with constant proper acceleration a,. He noted that this equation
is valid for any law of mass consumption since it is independent of a,. In classical physics
(c » o« or u/c » 0) the basic relativistic rocket equation becomes the well-known formula

u/veo u
=e orln r= ——
o eo

\.
i

3 |°z

since

u .ln(1+u/c)—ln(l—u/c)= Ll/(1+u/c)+1/(l—u/c)_£_

limlo r = lim lim
u/c>0 we=0 Uy, 2u/c u/e=0 Uy, 2 Vgy
Representing
/2v,
1 1-x] /7%
= = s £y g1
Y=7 l+x (0<y <D

as function of x = u/c (0 £ x £ 1) , a double differentiation shows that an inflection point
(y” =0) appears for

c 1-x

Xj
R = |- i
Xi = 5 <1 and ¥y = 1 )

The most favorable case v, = ¢ (photons) yields x, =% and y; = 1/\/-3_ ; that is, the
inflection point appears when = c¢/2 and r=+/3

Before closing this part, it should be mentioned that in the special case F_ |u

F=Fo_#ou:Fo<1—' u> (129)

veo

If u=wv, is attained, then v, will vanish and alse F = 0. From the technical point of view
the thrust force F, of the rocket in the rest system S is naturally the matter of primary
interest.

E. Motion and Mass Consumption of a Rocket
Under a Constant Proper Acceleration

The motion of a body under the action of a constant proper acceleration a, in the direction
of the velocity (a, || u), that is rectilinear uniformly accelerated motion, is known as hyperbolic
motion. It was first considered by Minkowski (Ref. 12) in 1908, but was discussed more ful-
ly by M. Born (Ref. 13) in 1909 and A. Sommerfeld (Ref. 14) in 1910. It was R. Esnault-
Pelterie (Ref. 1) in 1928 who applied this kind of motion to rockets with constant thrust accele-
ration and discovered the basic relativistic rocket equation for any law of mass consumption.
Contributions to this problem were also made by Shepherd (Ref. 15), W. L. Bade (Ref. 16),
E. Saenger (Ref. 17) and others. This presentation follows closely the author’s treatment
(Ref. 8).

For a rocket in rectilinear mdtion with a constant proper acceleration in a system moving
with the rocket (rest system) and thus a different one at each instant-eq. (67) can be written as

a

d u
dr <\/1-—u2/c2 > (1~ u2c2)32

= a, (const.) (130)
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or, integrated,

u

\/.1—.=2/_2— = ﬂot (With u=0 for t= 0) (131)
- u</c

This gives for the velocity

, 2 N~ 4
Ty NS VO L Y x] 132
dt VI+(a,t/c)? ° 2\c 2.4 \c

and, thus, fora

&

a =

o _ Mo _ —y2/0? = B _ 1 - _l(ﬁ 2 L3 /a, N\
@ = m mVimwet = o s e = 15 (Y s () T
Eqs. (130) and (133) yield for the acceleration

a, 1.3 1a, \2 135 1 sa N\*4_
d=d°a3= Il+(aot/c)2]3/2 =ZZ° [].— T7<C—t> + ———1.2 —2“2 <C_ t) +--r] (134)

The distance is obtained by integration of eq. (132) with

c? [ oo a, 2 1/a, \? 13 /a, \* 1
x=—a_o [\/1+(aot/c)2 —1J = —z—‘t [1-—-Z—<C—t> + R (C_a ;u-'jl (135)

thus

2
14 %o xe 14 %o, .1 _ 1 (136)
c \/1—112/62 a

Egs. (135) or (136) give immediately

<f:_; x+1)2__ <EC°—E>2=1 or <x+ %) 2-—((: D2 = (Z:) ? (137)

Therefore, the world lines are hyperbolas in an x ~ ¢t diagram and the motion is called hyper-
bolic motion in comparison to parabolic motion (x = % a, t2?) in Newtonian mechanics. The
inversion of the above-mentioned formulas yields for the time

a, u/c Vv1-a? <‘bia 2 ' a < a )‘
Gl _ - 1+ % —1 = [Zex (24 %o
> — . \/ + =g 9 vl Cahariy (138)

The proper time of the astronaut follows from integration of eq. (133):

- £ Y, 4 | 2o \? |2 & sinh (%
to = ;;—' In [—C-‘t +, 1+ <_C"t> J~ ao Slﬂh (Ca
_ 1 (a.\? 13 fa, N*o 139
_t[ — 2.3 p l> + 2.4.5 <C ) +ux.} ( )

) 4
=1, L1+-1_, ?t P Loy +} (140)
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Inserting this relation into eqs. (133), (134), (132) and (1'35). yields the acceleration, velocity
and distance of the rocket as a function of the proper or local time of the astronaut.

2 4
1 1 /a; 5 ra o
— — = - (=2 — (=2t o 141
" cosh(a,t,/c) 1 2/ <C t‘) Y (c ‘; * (141)
a 3 /a 2 11 ,a 2_ :l
- — o - (e — (o ves) ) (142)
a cosh3 (aoto/c) %o l:l 2 <c t°> ) (c ; *

u=c tanh'(—:—° 19 =a,t, [1 —»% <%q_ t92+1—25_ <§a t) 4:-.-.] (143)

c? a a_ , 2 1 a 2 1 a 4
*= a—[mh (= ’Q"J =2t [“ 51 (24 * 5ass (54 +} (149

In addition to eq. (139) for the proper time ¢, the inversion of the preceding formulas yields

T3 -1 -1
%l . n <1_+L1:__.“2_>= cosh <_1_>= In [L+u/c  _  h _”__>
c a a 1-u/c c
a a 2 -1 a 14
=In|1l+—2x + 1+<—°—x> —1 | =cosh 1+—g—:> (145)
c? c? c

A rocket travelling with constant proper acceleration a, requires, in order to attain a given

distance X, a time
T o 2% (146)
ao
in the system of classical physics;

c fa, a, ' a, X
. a‘/;x <2+?x> =7 [l 523

o 1/a X\ 1 (ayX¢ 1.3 (a X)?
=T [“5(2&)'% 27) " T <2c2> ;"} (147)

in the system of the stationary earth observer;

_ -1 . -1 2
‘- < cosh 1<1 N a, X T cosh '(1 + anX/CZ) _ T sinh \/a X/(2c¢ ‘_i
° a, c? a_X/c2 va X/ 2c?
1oL (a.X 1.3 (a4, x> 2 1.35 ‘.‘.J) ¥ (148)
=T |l—53 97 ) * 225 \ 22 5467 \ 2c2

in the system of the astronaut traveling with the rocket. In general ¢ < T <t Thus the astro-
nauts undergo an immense gain in time from the relativistic principle.

The preceding relations contained only kinematical data. The equation of motion in the
system of the astronaut

m a =F =— v d—mﬂ— or d—mfl:— E‘?—dto (149)
o o o e dt m, Vg,

yields, after integration, the mass ratio of the rocket:
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agto/ Vv , ? c/v 1T — 2 c/veo
. _@L:e oto °°= [ga_t 4.1 + (20.9 ] °=° [_1+—11__a_]
m c c a
c/(2veo) c/Veo
[fiZ;c] =[+i""+\/<+—°x —1} (150)

The thrust is given by

a

Fo=mya,=M,a,/r = Mya e 00" fa _; (151)
o o
The other kinematical data, expressed as functions of 7, are:
2veo/C Vao/C
u T _-1 — 2,. eo
£ - . - “u2jc2 -
C S mere | ° VI=uZ/c T (152)
. ) P (ot Vi (153)
= - = 2a rVeo/ €
2v /c
v u/c S |
o= g lar 1= £ (49) < S L (154)

All relations in this paragraph can be written in a dimensionless form by selecting c/a,’ as the
unit of time, ¢ as the unit of velocity and c?/a, as the unit of length., With c = 3.1010° cm/sec

and a, = g, = 981 cm/sec?

c? 9.1020 .
—_— = = 9.18.1017 cm = 9.18+]012km = 6.14.104 A.U. = 0.97 light years
go 981

c _ 3.1010
v — = = 9, . 7 = . = U.

. 581 3.06+107sec = 354.2 d=0.97 vyears

F. Motion and Mass Consumption of a Rocket
Under a Constant Thrust (Constant Mass
Flow Rate)

In this case, first treated by the author (Ref. 8) in 1955, and also by Kooy (Ref. 18) the in-

vestigation again proceeds from the equation of motion of the rocket in the system of the astro-
naut traveling with the rocket, namely

m_a
(1-u2/c2)372= Moo= Fo= 1 po (155)

Taking a constant mass flow rate, M, » the mass then decreases linearly with time f_, according
to the law
my=M,~p t =M, (1—_;4’_:; (156)
(<4

Again taking the exhaust velocity v of the gases to be a constant, then the thrust, F,, also
must be constant. On the other hand F=F (l1-u/y,)=yu (v, —u) is variable. Combin-
ing the two eqs. (155) and (156) the proper acceleration is

a F /M
- _  _ _  _ - —o _ Ho’Mo
(1= u3/c2)372 = a5 = Veo 1= (o /My) 2, (157)
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or (since a =du/dt=a du/dt,)

A oM
1-u2/cz = "o 1 - (o /M)ty 7°

An integration yields

c 1+ u/c o
—2—10 m =—ve°ln (1_—Ad—t‘>

Thus, the reciprocal mass ratio is

1 m, o 1-u/c ¢/2Veo
- = =1 o, _ T ke 158
T M ! M, fo 1+u/c (158)

o

This is again the basic relativistic rocket equation which is valid for any law of mass consump-
tion. The inversion of eq. (158) gives the velocity

e 1 —(1/N?7e’/c - c r2veo/e _1 (159)
1+(1/n2vec/c — r2veo/c +1

therefore

Veo/C Veo/C
o Z—il=\/r_7_-‘”2 . 2(1/7) 27

1 +(1/r)2veo/c =7 2Veo/ct 1 (160)

In the two preceding equations, 1/r can also be replaced by m,/M, or 1~(u,/M,) t,. The
acceleration is easily found from a = 4,a® using eq. (160). The time and the distance can be
determined in the following manner, using eqs. (158), (159) and (160):

e _ 1-(vea/¢) 1+ (veo /)
M, [1 (1/7) L 1=a7 Jfor Vet (16D)
= ﬂ:M_Of—dr— .
a /‘Lo 7'2(1
o I

2u, 1"(er /) 1+(ue° /)

M - (1/7)2
ol [lnr+ L(—/L)—:] = Li‘f:; lnF2+ (1~ l/rz)} for v, =c¢ (162)

2u )
and ~
to r
X=c u/c dt,= ¢ M_° u/c dr =
2 ko f, ar?
“(Veo/€ +(Veo/c)
c M, [1-(/m ore) 10" J
2 E {1—(1/30 /c) T 1y (00 70 for v+ ¢ (163)
[ - 2
", 1-(/92 ;M{m, R I 64
2 1 4w §

In these last equations, 1/r can be substituted by m,, f{, or z according to eq. (158).

o

In classical physics (¢ » o0 =v _/c>0) a=1 a=a_ and t=1t. Foregs. (159)
and (163) the limit must be found by means of the Bernoulli-de I’Hospital formula:
u ; 1 r2¢_1 1 .. r2€-1 1

—  =lim—- — = =1 _ 1y 2¢ _
T €50 € 311 2 éxo e 5 lim (2r *In7) = In~
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and

x - im L 1= (l/r)l'6 _ 1—(l/r)l+j
Vo M,/n, €v0 2 l+e

o L [25 ~ L+ (/AT 4 (1= el/nie }

€0 2¢ 1 -2
- lim [ _ Qs —(1-90/ ')”‘__]
€50 2¢
10 1-€ 1 1-€ 1 1 1+€ 1 L+E 1
=€l—:n(1) {1 _,TZ_[(-T) - (1+¢ <—r—> In <r-> + (T) -1 —~c)<7> ln\—r—j}
=1—'L+ilnL= ' (1—111— -1_ l+lnr
r r r r r

Unfortunately it is not possible to express acceleration, velocity and distance also by the
time ¢, as in the special case of constant proper acceleration, since eq. (161) cannot be
inverted to give t_as a function of t. Developing this equation in a power series

Mg |1 = (1= pyt, /M, ) Vel 1-(1 —p t,/M,) 1T Vel )
0 "0 [+] 54 0 "o

L= 2u, 1~ (2, /0 1+ (uy /c)

e 3 b @y )

then the reversed power series reads

we (- (B 500 3 [0 )6 ) e

All preceding relations can be written in dimensionless form when choosing M o/it, as the unit
of time, ¢ as the unit of velocity and ¢ M,/pu, as the unit of length. The followmg three
tables show numerically the characteristic difference between the case of constant thrust accel-
eration 4, and the case of constant mass flow rate pu, (the exhaust velocity v., was taken
constant in all cases). For the second case (p, = const.) the calculations were made for two
special exhaust velocities, namely for ve, = ¢/10 and we, = ¢ (photon rocket). The assump-
tion we /c = 0.1 1is not typical for ion rockets; it is probably an upper limit. For fusion pro-
cesses, the mass conversion is <0.009 corresponding to v, /c <0.134.
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Table 2

Data of Rocket in Free Space Without External Forces

Data of rocket in free space

In system § of stationary earth

In rest system S, of astronaut

without external forces observer centered in the moving rocket itself

Velocity of rocket v 0
Actual mass of rocket me ——>To o Do m,

v/ I -2 7c 2 a
Time element dt = —:dt—"_—— = dt, dt,

V1-u2/c? a
Acceleration of rocket a=q? [u -(1-a) ( ) ] a,

- . 2 .
Exhaust velocity of expelled v o= 2o * vl a?(v” u)/u 1l v
gases i 1 -y, u)/c? e
*
Element of mass flow (after ejec- dm = Jﬂ-——-—— dm, dm
tion) Vi=v2/c? v2/c? VvI= 92 /c
Mass flow rate po=— d_m = _.‘ﬂl.:____. po=— dm2= :
& - JToaer R = v
* (

Thrust force of rocket F=pv = e ' F =p v, = ks v

=aF, +v [(Q-a)F «w)/u2 —p 1]




Tsble 3. Constant Thrust Acceleration a,

u m . : ' va/c
B=2 i 7, Tz i, ey T
0.0 1 1 0 0 0 l 1 1
0.1 0.9950 0.9850 0.0050 0.1005 0.1003 0.9980 1.1054
0.2 0.9798 0.9406 0.0206 0.2041 0.2030 . 0.9944 1.2247
0.3 0.9539 0.8680 0.0483 0.3145 |  0.3097 0.9847 1.3627
0.4 0.9165 0.7699 |  0.0911 0.4364 0.4240 0.9715 1.5274
0.5 0.8660 0.6495 0.1547 0.5774 |  0.5493 0.9513 1.7321
0.6 0.8000 0.5120 0.2500 0.7500 |  0.6932 0.9242 2.0000
0.7 0.7141 0.3642 0.4004 0.9803 0.8675 0.8850 2.3806
0.8 0.6000 0.2160 0.6667 1.3333 1.0986 0.8242 3.0000
0.9 0.4359 0.0828 1.2941 2.0647 1.4722 0.7130 4.3589
0.99 0.1 0.001 9.000 9.950 2.9932 0.3008 19.975
0.99 0.01 0.000001 99.00 100.00 5.298 0.053 200.00
1.0 0 0 oo o0 o0 0 o0
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Table 4. Constant Thrust v,/c = 0.1 (Ion Rocket)

X

t

t

[ —_— — —0
B=we cM_ /u, M, /u, M, iy t r
0.0 0 0 0 1 1
0.1 0.0269 0.6334 0.6329 0.9992 2.724 x 10°
0.2 0.0603 0.8719 0.8684 0.9960 7.599 x 10°
0.3 0.0816 0.9604 0.9547 0.9941 2.208 x 101
0.4 0.0930 0.9935 0.9855 0.9919 6.912 x 101
0.5 0.0981 1.0051 0.9959 0.9908 2.430 x 102
0.6 0.1002 1.0088 0.9990 0.9903 1.024 x 103
0.7 0.1008 1.0098 0.9999 0.9902 5.844 x 103
0.8 0.1010 1.0101 1.0000 0.9900 5.905 x 104
0.9 0.1010 1.0101 1.0000 0.9900 2.476 x 106
0.995 0.1010 1.0101 1.0000 0.9900 1.024 x 1013
1.0 0.1010 1.0101 1.0000 0.9900 o0
Table 5. Constant Thrust v_/c = 1(Photon Rocket)
X t t, o ty
B_PL/C CMO/#O Mo/#o Mo/luo t r
0.0 0 0 0 1 1
0.1 0.0047 0.0955 0.0953 0.9979 1.1054
0.2 0.0180 0.1847 0.1835 0.9935 1.2247
0.3 0.0394 0.2701 0.2662 0.9856 1.3627
0.4 0.0690 0.3547 0.3453 0.9735 1.5274
0.5 0.1080 0.4414 0.4227 0.9576 1.7321
0.6 0.1591 0.5341 0.5000 0.9362 2.0000
0.7 0.2278 0.6396 0.5799 0.9067 2.3806
0.8 0.3271 0.7715 0.6667 0.8642 3.0000
0.9 0.4993 0.9730 0.7706 0.7920 4.3589
0.995 1.2476. 1.7464 0.9499 0.5439 19.9750
1.0 o0 00 1 0 o0




PART Ul

RELATIVISTIC PERTURBATION THEORY OF AN ARTIFICIAL SATELLITE
IN AN ARBITRARY ORBIT ABOUT THE ROTATING OBLATED EARTH SPHEROID
AND THE TIME DILATATION EFFECT FOR THIS SATELLITE

SUMMARY

In this part Einstein’s general theory of relativity (gravitational theory) is applied to the
motion of an artificial satellite revolving in an arbitrary orbit around a central body and the time
dilatation effect for this satellite is given. This relativistic perturbation theory is based on
Einstein’s general field theory, differential geometry of non-Euclidean spaces, potential theory,
and celestial mechanics. The short periodic perturbations are excluded by using time average
values over a revolution. The secular and long-periodic (non-relativistic as well as relativistic)
perturbations of the osculating orbital elements, which represent deviations from the elliptic
orbit, are presented here for the case of a rotating, non-homogeneous, oblated spheroidal central
body. This is an extension of the work of Einstein (1915) who considered motion around a mass
point as well as the work of deSitter (1916) and, independently, of Lense and Thirring (1918), who
treated the relativistic motion around a rotating, homogeneous, spherical ceatral body, omitting
the terms due to the square of the angular velocity.

A formula for the relative difference of the time rates of a satellite clock, compared against
a standard earth clock (time dilatation effect) is derived for orbits of any eccentricity and equa-
torial inclinations, thus extending the paper of Winterberg (1955), Singer (1956) and Hoffmann
(1957).
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3. APPLICATIONOF THE GENERAL THEORY OF RELATIVITY
TO ARTIFICIAL SATELLITES

A. Relativistic Perturbation Theory

In this section Einstein’s general theory of relativity will be applied to determine the
motion of an artificial satellite revolving around the rotating earth as well as the differenee in
time rates of a satellite clock and a standard earth clock.

In Einstein’s geperal theory of relativity gravitation is determined by the 10 differentcomr
ponents g, of a symmetric covariant tensor of the second rank called the fundamental or metric

tensor. These components g, , are functions of the coordinates x,; x,; %5, x, and they appear

in the formula for the four dimensional line-element of the non-Enclidean time-space world,namely

ds? = % ‘7_, k1 dxk dxl (gk1= glk) (167)
In the following, a spherical polar coordinate system (x, =7 x,=0; x3=¢, x,=ct) will
be used, where r is the radius vector, § the longitude, ¢ the latitude, ¢ the time and c¢ the
light velocity. The line element has the following form

ds? = g, dx? + g, dx2+ gy dxl+ g, dxl+ 2g,, dx, dx,

=~ (I +a)dr?-(1 + B) (r2cos?¢ db 2+ r2d¢?) +(1 +y)c2d12+ 2g24d9 cdt

=~ (1+ 8)do’+(B-a)dr’(1+y)c?dt? +2g, df cdt (168)

g =—(l+a) i go=~(1+B)r?cos?e ; g, . =—(1+P)r? ; g, =1+y
2
gik=0(i=#k) except g, =g, = ic:)s—qs (b = const) (169)

where a and [ are functions of r alone while 844 will be assumed to be a function of r
and ¢ because it is needed to the second order.

The fundamental metric tensor has now the following covariant components:

811 812 813 814 8,0 0 0

821 822825 824 0 8,0 &y
Err = B T 831 832835 834 | 0 0 g4 0

841 842 843 844 0 84,0 84
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with the determinant

8220 834 833 0 0 g,
g = 81 | = 811 0 350 =841 822 + 81y 84
20 844 0 g4 835 0

2
= 811 822 833 844~ 81y 833 824 = 811 52 833 844

The contravariant components are now the minors of the correspondent covariant components
divided by the determinant, namely

gl = minor of g, _ cofactor of gy
8 4
Therefore
0
11 S22 Sas 1 . Jas_1 g0 0 8140822844 g24) 1
& = 0 g3 0 === & =—| 0 8,8, |= )
8 g g 8,8:5(8,,8,~ 8% &,
2 0 844 0 847 844
&1, 0 0
822=£ 0 g, 0 = — _ . .811 833844 — = 1 5 -1
g 811 822 833 844~ 811 833 824 822 ~ 815 "8aa 822
0 0 gy
811 0 0
g*= 1 0 g, 0 = 811 &2 &3 —~ = 12 .
& 811 822 &3 Bag ~ 811 833 824 844~ 824 &2 844
0 0 g4
. 811 0 0
24 _ o42_ 1| o o = ~ 811 833 824 - ~ 824 - — 824
g7 =g 824 2 Z
811 833 (82 84g — 834 ) 822 844~ 824 822 844
0 833 0

The Christoffel three-index symbols of first and second kind can now be defined as:

r =[ __xk_ 98y _ 98y [Zk:,
1 k&l dx, dx, z (170)

4
r i {k l} — Zg ir [ Z <_k!‘_ + d gkl - {lk}
Kkt i dx ax axr i

r=1 r=1

31



g'? Oger 812"
dx, E

— gis 3gk3+ agzi_. agk1)+ I gi4< Ska )
.d %1 0%z dxz 2 dx; axk
(T 3 3
S g2 Zke , T84 gor jo2
*1 X

2 98, 9812 ¢ ;o4
c?xz' 8x

k

for i=1 or3 (171)

v

where the g, amd g%! were taken as functions of x, and x; only. Special cases for [=1%,
I=%k and 2=1=i are

4
i1 i« (98 dgy e [
sz' T2 z g <6xl. ax 2
r=1

r=1

d ,
g“-g—igj(z:Z or 4)

(é#=1 or 3)

#0 (i=1 or 3)
0 (i =2or4)

_ #0 (i=1 or 3)
- 0 (i=2 or. 4)

When all the fllIlCthnS 811> 8920 8331 84 204 g, =g, are functions of x, =7 and
= ¢, then the P # 0 are

2 _ 1 . 2 2
F_—Z? =T

I gdg 22
11 12 21 2g,,0%

r’ - r?-
2g,, 0%




oo ! igu;[ﬂ=1“3=1 9833 =T = _5’24 _u_gzz 1% .l 984
11 284, 0%5 13 31 2g,,0 x, 12 21 2g“ &2 9%, 14 a1 2g,, 0%,
- L 98 ps_po__ 1 9 (|pe_pe_ ( 9822

22 2855 0%, 24 42 2 g;50%, 23 32 2344 gzz 6x

s_ L 983 ps_ _ 1 gy Pf_r*. 1L 924

33 2g83,0%x, 44 2g55 0%, 34 43 2g,, dx,

F'=I‘1' =F’=P2‘ =o' 21! 20 (i=1 or 3)

Do cr! e e’ o 2 2T 200 (122 or 4)
11 13 22 24 31 33 42 44

By contraction of the Riemann-Christoffel curvature tensor of rank 4 for the non-Euclidean

space-time world a symmetrical curvature tensor of rank 2 is obtained by the explicit expres-
sion

r al—‘kr[ T 8 a_Eka 8 r
ZR ket = Ryg=Rye = 3%, - z r;, F” - -axr +2 Erkr Fls (172)

Using the relation

_ _1_ 1 dlalg, | _ 1 dln gl dlny/|g] 173
Fkr— g, 6x 2 2 9dx,  0x, 73)

r

the contracted curvature tensor can now be expressed by

_p _ 92y r aln\/lgl ol s pr
RkI—RIk_ 6x ax 2 r k1 Zéxr Y. Fkr Fls
r r 8

_ 621n\/|—g|—_ r! aln\/l—gl _r? Gln\/_lél__ al‘k’, _ arﬁl

dx, 0dx, k1 dx, k1 dx, dx, 3x3
PN D Ok LA aCN oLIIND A AL 0 F‘] +[r‘ r? + T2 +T°r? 1 F2J
k1 11 k1 12 k1 13 k1 14 k2 11 k2 12 k2 13 k2 14
+

{F’l"s L7210 .r°r? +F‘F3:] +[I“r“ cTir . r’rf +rér*
k3 11 k3 12 k3 13 k3 14 k4 11

k4 12 k4 13 ke 14
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and thus for [ =%

9?1nVTg] 1 dnyIgl s dlavigl  dTg  dTg
R = — - - - -
kK axi ke dx, ke dx, dx, dx,

11\2 1 3 1 4 1 232 2F3F2
* (Fkl) +21_f1 sz +2 r;tl Fk3+21_l‘tl I-‘k4+ (Fk'.’) * k2

k3
S A RN T A R O
k2 k4 K k3 k4 K
3
Neglecting higher order terms the ten components of the contracted curvature tensor are (I'° =T
-T’=r*=o:
33 23

07 1n \/[g| 1 91nV][gl 8(‘111 142 2 332, ([ #4)2
Rye= o0x h Pzz Jdx T Ox +(F11) +(F12)2 +(F13) +( 14)

— —r 1 3
1 dlnv/|g 3 dlny/|gl  aT,, 9T, 2 1 3 2
Rpo=- Fzz dx, —F22 dx, dx, dx, +2 Fzz Fzz 20, T

R = 321n\/—|g_|_ r! dlny/|gl 2y

22T T e (P27 + (D))

33 dx, 33 dx, x,
“op e 1 3
g —_pt9lnVigl psdlnylgl 9T, 9Ty  ,pept p¢ps
447 44 Ox, 44  dx, dx, dx, 41 44 43 44
_ 821n\/m 3 dlny/|g| 212 24 44
Ris=Rsr= dx,0x, L dx, 1 1—‘32 +I114[132 +F14F34

o 1 3
R,-R,=-rto0Viel psdlnvigl 9L, 6T p2p: pept

24 42 24 0Jx, 24 OJx, 9%, dx, 21 42 21 44

1 2 3 2 23 1 4 3 4
+ " +°r°+r°r” +°° T +10° 0
22 41 22" 43 23 42 24 41 24 43

Rip=Ry=0 7 R =R;=07 Ry=Ryp=0,; Ry =R;;=0

The most important problem in Einstein’s theory was to set up the general equations deter-
mining the gravitational field variables or the g,, when the distribution of mass is given
Einstein finally solved this problem in 1915 after several attempts and succeeded in finding the
general field equations in covariant form corresponding to Poisson’s equationin Newton’s
mechanics. Based on the theorems-of conservation of energy and momentum he (Ref.19) found

1
Rer— 5 R&wxs ==« Ty (174)
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vwhere

X
I

z Eg "Ry (175)
k 1
is the curvature scalar and

dx dx g
Ty = Pzz 8:k 8s1 d—sL s (176)

is Einstein’s energy-momentum tensor neglecting the small contributions of pressure and elastic
stresses ( p = density). The constant of proportionality

(177)

follows from a comparison of the general field equations with Poisson’s equation (G is Newtor’s
gravitational constant).

Multiplying Einstein’s field equations (174) by g#! and summing over & and [ (con-
traction) then follows

R= kT (178)

k 1

k 1
There fore, the field equations can be also written in the form

because

1
Ry =—k (Tyy - 3 Bu T) (180)

Neglecting the pressure gives
Tyy=Tpp=Tss=0 . Ty=p (I+y), T=p (181)

Einstein’s field equations are a system of nonlinear partial differential equations of the second

order which must be solved simultaneously to obtain the components g,, of the metric tensor.
An approximate solution for a field with spherical symmetry was first given by A. Einstein

(Ref. 20) in 1915, making the assumption that

Vigl =1 or B+ é (a+y)=0;

2m

a=-y., B=0 ., y=-

r

where

S GM [1.475 km (Sun)

cZz | 0.4435cm (Earth) (182)

is the gravitational radius of the central mass M. In 1916, X. Schwarzschild (Ref. 21) gave
the correct solution (with \/]g] = 1).
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1 2m
1 = ; =0, y=- 22
+ta= o ” B =0y ”
The line element has now the form
dr? 2m
d$2 = - 1——2771—/7‘ —72(C052¢ d02+ d¢2) + (l— ‘r—)Czdtz (183)

Introducing harmonic or isotropic coordinates 7, 6, ¢, ct defined by the transformation
— m N\ _
r=r (1+———) =T +m (184)

the line element assumes the form

4 ' — 2,
ds?= _ (1 + 2_”i.> (dF2472 cos2¢ dO2+72d$2)+ G:_:%_L) c2ds2 (185)
r r

Including only first order terms in @ = 3 and second-order terms in y and neglecting the small
difference between r and 7 the line element is now given by

2
ds? = — (1+ 2_m> (dr+ r2cos?¢ dO?+ r2dp?)+ (1— LG 2L2>c2dt2 (186)
r r r
thus
2m 2m ?
a=B=-y , y=- T+ —3

This particular form was derived and used by deSitter (Ref. 22} in 1916. It determines the
metric of the non-Euclidean space-time world in the neighborhood of the mass M and the gravi-
tational field and thus governs also the motion of satellites around this mass.

In 1916 W. deSitter (Ref. 22) has also shown how the motion of satellites is influenced by
the rotation of the central body according to Einstein’s gravitational theory by also introducing
the component

To4=— p€ r2cos? ¢

of the energy-momentum tensor in his field equations ({} = angular velocity of the central body).
The solution then gives the component

b cos?
&4 —‘;M(b=const.)

In 1918, J. Lense and H. Thirring (Ref. 23) independently solved the same problem using
Einstein’s linear approximation solution for weak fields (Ref. 24) and they arrived at the same
result as de Sitter. All these authors neglect terms proportional to 2.

In this paper the g, , will be determined including terms due to Q and 2 as well as

terms due to the oblateness of the central body. This then leads to the relativistic perturbation
theory for the motion of a satellite around a rotating oblated central body. Again, Einstein’s
linear approximation method for weak fields will be used.
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A Cartesian coordinate system (x3j=x X, =y, Xg=2) with x4 =ict for the imaginary
time coordinate will be used. In this system all the g, have the same value — 1 in zero
approximation. If

~1 (k=1
8kt = St * Y’ O = { 0 (k1) (187)
and
4
. 1 ,
Yir =Ykr * 3 Ok Z Y oa (188)

a=t
then Einstein’s solution for weak fields is given by

. T, dv,_ fT T, dV, (189)
Yir = 2rr A

along with the energy-momentum tensor

2
T, - p P _, (L&) dxy  dxg (190)
ki ° ds ds ds dx, dx,’
the volume element
dv, =i Taav o Tagraraoi Ta prgrcosgrdgds” (191
o ds ds 4 ds

and the distance of the mass element dm’ from the attracted point (x = r cos ¢ cos 8: Y= r cos
p H

sin 6 ; z = r sin¢) under consideration

,

A= [(x-x9)? +(y—y')2+(z P Tl R [1—25 cos o + <—:—,)2]1/2 (192)

with
cos g = sin ¢’ sin ¢ + cos ¢’ cos ¢ cos (6~ ) (193)
From potential theory for r> r’ .
Lo LM ()" b, (cos o (194)
A T i

where, according to Legendre, the surface harmonic P, (cos ¢) is given by the addition theorem

= —_ ! . s . ’, ’
P, (cosg) = P, (singh) P, (sing’) + 2 ((——: " 3, P® (sing) Py (sing ") cos s (6

a=1 (195)
and
d*P (sing)

P: (sin¢) = cos® ¢ FIETP

(196)

are the associated Legendre functions of Ferrer.

37

-0)



Under the assumption that the central body rotates around the z-axis the velocity components
of the mass element are:

dx, odx” . Qyl L Qr Y

dx , =Tt edr Tt TPTe cos ¢”sin ¢

dx . dy’ . Qx’ . Qr’

Sy - - - . ,
dx4 1 p 1 - 1 cos ¢ cos §
dx dx

3 . 74 _

dx , 0 dx 4 1

The components of the energy-momentum tensor are therefore

) "2 >
_(Qr) cos? ¢ sin26’ (Qr) cos2¢ sinf’cos §’ 0 1(9—7 cos ¢” sin &
c c . c
dx 4 Qr\2 . (Qr' 2 , LQr
2 , . (82 2 2047 _ , .
Ty p"(ds) (c )cos ¢ sin 0’ cos 0 C)cos ¢’ cos24 0 z(C)COSQS cos G
0 0 0 0
ch)cos ¢’ sin 07 - i(ﬂcr) cos ¢’ cos 0 0 1
(197)
Introducing eqgs. (190), (191) and (194) into eq. (189) yields
= M
, 4G . fdx \3 dx, dx r\n ,
Yer =7 255 fz<7{5—4 Eof%?i(?) P, (cos o) dm
In first approximatino:n there is
L TR N P
dx, ds i ds
thus
d. d: ’
Yir = E f ik x, ) P, (cosg)dm’ (198)
X 4

n=90
where the components of the tensor (dx,/dx ) dx;/dx,) are given by the matrix ineq. (197).

It follows at once that
Yis = Va1 =0 5 Vs =¥z =0 Y35 =0 5 ¥ig=v4s =0

while the other components are given by
, 4G /Q\? 1 Fr .. , sin?@’ ,
yé; =~ =, <?-> E Ff r’nt2cos?¢ cos?” P_ (cos o) dm (199)
n=0 0
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o0 M
. 1
Yie ==3 —;fr n P_(cos o) dm’ (200)

oQ
)’1’2 = 4 G & Z —}- r’nt2cos?¢’sin " cos § P, (cos g) dm” (201)
o ’n+ 1 sin 6” . 202
y% = —n cos ¢’ cosd’ P, (cos g)dm (202)
n=0

The expression for Pp (cos o) in eq. (195) and the mass element, dm = p r"2cos ¢’ dr” dep’ d9”,
will now be introduced into eqs. (197) to (202). The mtegratxon with respect to the local radius 7,
will be made from O to R; with respect to the latitude, ¢’, from — /2 to #/2; and with respect to
the longitude, @, from 0 to 27. For a sphencally symmetric model the density is mdependent
of the longitude, §7, and will be assumed to be givenby p=p (r7¢’). Therefore the integration
with respect to @’ can be performed immediately. Ineq. (199) there occurs the integrals:

27
sin 0”7 ,
fcos@’ 46’=0

0

27 27
ﬁLZZZ’ cos s(6’'~6) da’ =—12—f[1¢ cos 20" ) cos s (0°-6) dE’
0

0 27
1/ {cos[(s+2)0'—560]+cos[(s-2)0"—~s01}dO’=
0

+
|

M,:}

cos 260 (s=2)

T
0 (s# 0)
Therefore

’ & P
}’é% = [2 [ (2Si2¢)f ’ﬂ+2c052¢ P, (qus’)dm] (203)
= 0
— - 2)! 2 (si M
+ 2[ EZ.;.Z;/ Pa (23:: ) cos 26 fr’n+2cos (;S’sz‘ (sin &) dm:}}
n =2 o

The following integral appears in eq. (200):

2m
cos s (6'-6) d9’=0
thus

L]

M
, 4G o= P, (sing) . .,
i 53[50 [T wia]

n =20
In eq. (201} the following integrals can be found: ?

27
sin @' cos 0°d6’ =0
2 [ 27

sin @’ cos @'cos s (0°-0)do =Y f sin 20 cos s (0"~ 0) dg*
0

0

1 o . = sin26 (s=
=I‘/;Sin[(5+2)6~s€]—sin[(s—2)6'—se]}de’ 212 26 .(s=2)
o 0 (s#2)
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therefore

J%
- 2 i
Yi2 = Cz, (Q) [E: +22)):: L (2Sinn¢’) Sinzf]‘ r'1*Zcos2¢ Pl (sing )dm’
0

(205)
27
sin §° ,
fcos@' d6°=0
0
277 27
sin 07 , , sin , sin
fcose' cos s (87~ 0) d§’= %f[cos [(s+1 6 -seJ 2 ls-ve’ —59]]
0 0

In eq. (202) occurs the integrals

ST
0 (s=1)
thus
M
. 4G Q>§: (n—=1)! Prll(siruﬁ) sin rnt1 PR , ,
y;: =t E(? {(n+2)! r cos r cos ¢ P"(81n¢)dm
— 0 (206)
Introducing
M C 2
=I'= = (n=0)
2
1= —M—lR—nT—zf pr it coszng'Pn (singp”)dm’ = MR =~ 0 5 (n=1)
()
2
A = —3—5— (ﬂ= 2)
-1 {(n=0)
r’"P, (sin ¢ ") dm’ = 0 (n=1)
cC-A 2
wri-3/(m=2
MC_RZ '=F = % (7’2:1)
- Fon+1 4 p1 (g} ’ -
n_ MRﬂ+1 cos ¢’ P’ (sin ¢”) dm [ -0 (n=9)
n:ﬁﬁ ’"+2cos2¢ P2(sing")dm’= { = ‘g (n=2)

0
(approximate values refer to a homogeneous body) and using the gravitational radius m = GM/c? eqgs.

(2€3) to (206) become
(?)" P’ (sin ¢) cos 29}

)’11 _ __<QR> E ) P (sin ¢) 3 EZ;Zj/
(207)

’ R " 1
744= 1_ E: I (T) P_(sing) (208)

n= 2

. 4m /QR\? (n~2)! L. /R\ . :
81a = Viam T<—c) E : {(_;_2), = (T) P2 (sin ¢) sin 29] (209)
n =1

MLP‘
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. . 4m QRE: (n—1)! R\" 1 . sin
géz—'y;: R v (T) [(ﬂ+1)/ Kn(T) Pn (sin ) cos@] (210)
n=1

and therefore
4

P 4m : R\" . Q R\? n .
E Voa = — [1_5 ] (7) P_(sin ¢) - —C—) E In('-f—/) Pn(squJ
a=1 n= 2 n=0
Because 4
e 1 ’
B =~ 1+ Vi — 5 Yaa
a=1
there is
2m RY" . ~ (QR\ (n—-2)! (5"2 .
gé; =-1- . [1—- 2 Ia 7) P, (sin¢) | <—c (n+2)./L" 7) P?(sing) cos 26

(211)

il D NXC LYV CT D YRR R R
n= n=20 .

&y =—1+ 2%[1 - i I, <§>n P_(sin ¢) +<QC—R)2 i I <:—2)n P_ (sin qS)] (213)
n= 2

n=40
Taking only the terms up to n =2 then the components of the fundamental tensor are
o1 2 (BY b sing) £ (2R Le (RY cos2g cos 26 (214)
gé; T -/, r 2 (sing) 3 c 8 r

2 2 2

g ——1- 27_’”[1_]2 G) P, (sin ¢) - (QTR) [F+A<§) P, (sin(j)ﬂ} (215)
- 2 2 2

844 =-~1+ ZTm[ 1-7, (—IE—) P, (sin¢>)+<Q’—CR> [F+A <§) P, (sin qSﬂ} (216)

4m (QR\* L, /R\2 .
812 =— <c EZ <T> cos2¢ sin2 0 (217)
. 2m /QR R sin @
-+ =
g =t ()T () s S 1

Inorder to have a spherically symmetric field the very small terms proportional to m/r and (QR/c)?
will be neglected. In g44 only, the term will be retained and the second order term

2m2/r2. [1 - 2]2 (R/r)? P, (sin )]
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42

will be added according to de Sitter (eq. 186). The reason why g,, is required with higher accuracy,

is that it appears inthe equations of motion multiplied with the large factor ¢2. The line element can
now be written

ds? = g, (detedy?+de?) - g, c2di? + g dx icdt + gy, dy icdt

- [1+ 2rm [1 A (r)z Pz(rf)JJ (dx2+dy2+ dz2)

S ORXCRC NN ORNG

2 (:_”)2 [1 -2y, <§)2 P, (sin ¢j>c2dz2

2n (QCR) r (?) 2 gxcdi+ ——<Q R)F<R) dy cdt (219

do?=dx?+ dy? + dz? = dr?+ r? (cos? ¢ dO? +d¢p Y (220)

+

+

Because

xdy——ydx=72c082¢ dG,—f- = sin ¢ (221)
the line element can be written

ds? = — [1+ 2m [1 Ia ( ) P, (su‘qu)i”(dr +r2costh dfi2+r2d ¢ ?)

< - 21_’”{1 Ta @) P, (sing) + (-QTR) [F+A @) P, (siwﬂ
+ 2 G’if{ 1_2]2<§)2 P, (sin ¢)}>Hdz2 (222)
=T <%5> R cos?¢ d@ cdt

This is now the square of the four-dimensional line-element for a non-Euclidean space outside a rota-
ting oblated uthomogenous spheroid of mass M. Writing

5% =81 %] + Byp Ox] + 833055 + 84y dx] + 8y, AN, dx,

where now
X, =71 x2=6 ; x3=¢ ;s X4=ct

then the components of the fumdamertal tensor are

&11= [1+ ——[1——] () P, (sm¢J] ; ‘822=g11r2cosz¢

2m QR
833=81172 P Bgg= B4g= — r —C——)Rcoszqs

L =1- 277”[1 -7, (?)2 P, (sin ¢) +<Q—CR) [l" + A (75)2132 (sin ¢i”
+2 <§)2[1 -2J, (@)2 P, (sin ¢]



Their derivatives are given by

dg rdg 1 dg 2 1 Jdg
9&a _ 9811 982 _ 2 L. - 981
3, 27 cos?p (g, + 5 3, > g 07 s g, 9r

d 834 2m <9_R 24— 824

dr T r C)RCOS b= r

P - 2 fia (%) puein oo (200 (B, in ] -
_ 277” [1_4]2 <’—f)2 P, (sin 4]

and
gg 1- 22 ]2<) Pl (sin ¢) = 67' () sing cos ¢
%22 2r2sin¢cos¢<—gll+% cot¢a¢ : é—i: g(‘; -
=g111 §¢> -2 tan ¢
(‘39—;21:_ im F(QCB—)RSin¢>cosq5=—2g24tan¢:2rtan¢ 082
a_gA3=72£‘L1} L o dg, 1 dey
R ER) 833 0¢ 811 9¢

e [ (- 2O A () g

It is now easy to write the values for the Christoffel symbols of second kind:

1 9 1 9 R\2 o
rte 2 %811 . 5 ._gLLz_L”__[l—?,]z (7) P, (smgﬁ)}

or r2
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1_ 1 Odgy 1 dey _ 3m
Fls_ e, 9 =~ 3 3¢ ]2< ) sing cos ¢
1 1 dg r1l dg 1
= 2922 = 2 o o111 ) 2h—1r2 2
F22 5 75 r cos q5<1+ 3 = ) rcos2¢ —r2cos?¢ '/
&11 811
1 _ 01 dgyy 1 O8y_ _ 82 __m_ p(QR 2
1—‘24_ 2g,9r 2 dr  2r T2 r\ C)R cos®e
rt-- 1 _a_gl3=—r<l+r_1_a_gl_9=——r—r2l—‘]= 1 r'
33 2g,,07 2 g,0r 11 cos ¢ 22
1 9
rt=- 9844 _
44 28y 97
R 2
1_3]2<7) P, (sin ¢)+\ ) I+ 3A< ) P, (smqu 1~4]2< )P (sing)
r2 1+2;’£ [1_]2<) P, (squ)]
= m—2[1~3]2<) , (sin q5)+& >[F 3A ) P, (smqﬁ:l [1 47 < )P (sin (;S)J]
and
21 dgy 1 L 2 1 9824 _ Y
FIZ_ 28y, Or 7 " l—‘11 ’ 1—‘14 T 2g, dr  rZcosig
r? - ! ag22=—tanq§+f‘l; | ! 8824=+2rtan¢rz=————~—2F214taﬂ¢
23 2g,,d 13 3¢ 2g,, d 14 r cos2¢h
and
3 1 Jdg 1 1 3 1 Jdgg, 1 1 1 1
= — —o11 — - = . = P = =
Fu 2g335¢ r2 F13' 13 2g33 ar r2 Fss r + I111
1 9 .
F; =~ 28339—%-2=-— cos 2¢ F223=s1n¢cos¢—cosz¢rll3
3 1 dg,, 2 2 _ 2 1
I‘24 - 2—53; __Ma¢ =— cos2¢ F34 == tan ¢ F“
3 1 dg 1 3 3 1 J 1 4
= 833 7! o == T84
F33 g 90 Fls r21—‘11, F44 Tes 0 ~, F34
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4 1 ag“ _ 1 ag _m 3 (5)2 . o
F“ - 2844 ar T2 or ] 3J, . p, (sing)| =
_g;aqs 1=-rF214':—2tan¢>-—21_‘113+2tan<éf=0(m2):0

_iu_ - .3$ []2 - A @ZJGE)Z sin ¢ cos ¢

These Christoffel symbols will now be substituted into the eqs. of motion (geodesic line)

25
LN ZEFM Ly B0 [i-1,2 3 4] (223)

but first of all the line element ds canbe eliminated by the relation

dzxi _ 4 2 re dx, dxl
ds?2 = kI dx,
k=1 I=1

which follows immediately from eq. (223). Therefore

d2x _ . a’x . a’xl 2a’2x a’le
d52 dx ds dx2 ds?
_ d?x, dx , 2_ r* dx xl . di{ 2
dx42 ds k1 dx x4 ds

k=1 1=1

.
kl dx dx4 ds

k=1 I=1

or after dividing by (dx, /ds )2

a’2x1 dxy \dx, dx; .
2 2 < o At =0 i=1 2 3] (224)

k=1 1=1

Because

Xy =71 x2=6 ;o xg =6 X, =ct (x4=c)

the final form of the equations of motion is

NG R

k=1 I=1
The equations of motion in spherical polar coordinates

0 [i=1, 2 3] (225)

are thus, up to terms of order m,

r 4+ (l_‘111—2I’144);2 + F212 62+ F313 </;2+F1 c? +2 (I_'ll3 -—1—‘3'1 )7 q,‘) + 2 F;4c =0

and

0 +2T%7 0+ 217 06 +2 (M-, 2) ci w2 (rsi—r;“i)cqé:o
c
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b + Ffl Pty F232 0%+ (F333'_2F344) ¢2 +2(F133—F11) Té + 1_‘43452+21—‘24C6=0

Using the relations between the different Christoffel symbols and bringing the terms of the unperturbed
motion to the left side of each equation, the right side will then be the perturbing acceleration (radial
component R, lateral component P and meridional component Q, respectively) due to oblatenessand
relativistic effects. Rearrangemert of the equations of motionyields

;- o2 cos2q§—r¢;2+ oM =R _<£ —I—':4) c24+ 1—111 v?2

r2 r2
+2 (F:‘*_ r‘111) ;2+2(F;4— r‘113) Fé -2 F214Cé (226)
and
rcols¢ % (rz'éc052¢.) Eré.c°s¢+2’.écos ¢—27é¢;sin¢.=P
] 5 2¢ T, .
= 2(I}, - 111)T;‘9C°S ¢+2(F344 - 113)’6¢C°S¢+,c032<; (r+27 ¢ tang) (227)
and

Ldij—(r2q;)+ré2sin¢ cos (}SET(; +2r'¢2+ré2sin¢ cos p= Q
;

. i, 4T, s .
= - Ff4rc2+ ! v? 9 (Ff4—r‘111 )T;¢+2(F;4—l—‘113)r¢2-———C—in(resm ) (228)

- 1375 r cos ¢

In order to investigate the perturbations of the osculating orbit elements the perturbing ac~—
celeration must be given by its radial components R, its transversal component §, and its orthogo —
nal component W. Definitions and transformation equations may be found in the author’s report (ref.
25). Introducing y, the inclination of the orbit with respect to the equator of the primary, X, the
velocity or flight azimuth angle or the angle between the local meridian and the orbit plane, and "« =
@ +w, the argument of latitude or the sum of the argument of the pericenter and the true anomaly, there
exist the following relations for the angles:

cos ¢ sin X =cos y
cos ¢ cos X =sin y cos u
sin ¢ =sin y sin u (229)

and the following equations for the angle rates

é cos2 ¢.

) zlcosy ; @cosqﬁ:z}sinx
¢ cos ¢p = % sin y cos u ; Lo =u cos X (230)

The total velocity is therefore

v2=r'2+726'2cos2¢+r2q§2=;2+r2z22 (231)



Its components

v, =71 ; v6=r0cos¢, v¢=r¢ (232)
are now transformed to the radial, transversal, and orthogonal velocity components, respectively:
v, =7

v, = vg sinX+v¢cosX=récos¢sinX+rq.S cos X =ru
vy = = vg cos X+ u¢sin X= —r6.cos¢cos X+r ¢.sinX=0 (233)

The transformation equations for the components of the perturbing acceleration are
R=R; S=PsinX+ QcosX ; W=—-Pcos X+ QsinX (234)
From the above mentioned relations, there follow the equations

sin 2¢ cos X = sin2y sin 2z ;
' ¢sin2¢=ﬁsin2ysin2u
sin 2 ¢ sin X =sin2y sin v (235)

which will be used in applying the transformation equations. Substituting the values of P (right side
of eq. 227) and Q (right side of eq. 228) into eqs. (234) and taking the expression for R(right side of
eq. 22G6) then (after using eqs. (229), (230), (235) the comp‘onents of the perturbing acceleration are

R=(7— l—‘44C +1_‘11”+2(F14,"F11)’ +2 —3—4—1-3-rusmysm2u

sin 2 ¢ (236)

c T,
. 2 <Coﬁé>u cos Y

= “F;“ c? sin2y sin 2 F113 v? sin? ysin2u+ 2}, -}, )rra
-~ mog /)7 yemess tGinz g/ Y TE e

S1

| R aly P 7 cos
—'—53142 p; L3 ) a?sin?y sin 2u + 2 <c_c—>—s_2i2¢ )———Xr (237)

(sm2¢ —sm2ysmu+< 2o v? sin 2 y sin u
2<{;Is%4$(; <:osu+2rzlsinu)ii—l:—-Z (238)
or, after substituting the values of the Christoffel symbols and writing
P, =P, (sin ¢) = P, (siny sinu) ; c2m=GM=p

there is
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N O ROD R RO
-z ”72[1_312@)2%:! . 27 52[1—3]2@5)2 sz
_]2<>ru51nysxn2u+—r<QR><> cu cosy (239)

and

2 2
§=- —g——ﬁ% !:]2 -A (—(?) J(E;.) sin?y sin 2u - 7:1 (R) sin?y sin2 u
) : ], 2,
+4Tm[1—3]2<§> Pz:, r’u+6__rm_]2 <§> 7 22 sin?y sin 2u
- 2_771 IR <g£) (.}_2) _C’__2°°S (240)
r c r r
and

‘ 2 2 2 2
W § g, []2 _A(Q_CR> J@) sin 2y sin z — % “ ]2<§> Y sin2y sin
QR cs
+_._ r ——Z (Fcos u +2 ru sin u) (241)

These expressmns for the perturbing accelerations can be simplified by using relations for unperturbed
Keplerian motionin order to obtain first order perturbational effects, namely

Boiiw - s e g_l)
pelﬂ ,ll—r—z, U—I,Lr ;

or

Tu = r(ru)=#_2 (e sinw) ; ru?= (ru)2= h? ﬁ)

r r r r3 r2

(242)

Eqgs. (239), (240) and (241) cannow be written in the form:

. B 4_73 _3r_»
R = ,2@-’2(,) Py + (2 4 a )
2
_% ]2<75)[1:;’—7—§2—£ p)P -—esmzysmwstJ
1
2

11 (B2 cony - L @EF(E) 5 [reoa (B H> 243
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and

2
) =%<— g« ]2<I—j) sin2 y sin 2 u +; [4esinw_
r P
—2 I, ————4- sin ysm2u+8esme
2 ‘ 242 .
—2F<(—Z—R)ecosysinw+§A QQ—R) Esitﬂysin2u]> (244)
b 2 b r
e 13, Ry ; mo|_ 3 (R g T\ ;
W= 72[ 5 A (r) sin2 y sin u + . [ 3 ]2<r) (2 a>sm2y sinu +

2 2\2
QhR)sin y (e sin w cos u +2 -g— Sinu)+ % A (Q}]—R) g sin 2y sin u]] (245)

The Lagrangian method of the variation of parameters gives the following equations for the time rate
(variation) of the osculating orbital elements:

and

+2T

da 2 a? . dp 2p 246
Pl [(e sin w) R +(p/7) S1] ; e rS (246)
de? de  1-e? da 1 dp 2p _ b r "]

e _ a & _ - 22 _ zF £ L 247
dt 2e dt a dt a t h (e sinw) R+<r a> SJ (247)
do  do. dag _ P P . 7

= _F-kcosydt == 7.3 (7-1> R—Lesmw<1+; A) (248)
d d dM | 2 d 1

G0, L 2V 1-e?| 2L am (249)
Frainil v e2[hR+dtJ

dy rcosu dag rsinu

dt Y @ T siny v (250)

Substituting the expressions for the perturbing accelerations R, S, W into the eqs. (246) to (250) that
yields after reduction:

21—: p()< <> Zesmw-P—ism ysm2u:| +
+?[4es1nw<———;)— ](R [( -6 >esme
2
_37p-<2—jé>sin2ysin2u:| - QbR)[(% -;;esxnw<r+3A R) )
2
- %<A <§> Sin2ysin2uﬂ> (251)
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d; 2h 2
d_f = _r__<- ?’2_ A (lf-) sin?y sin2u + ;[4esinw
_3i], B)z <2_.£—4.—[i sin? sin2u+8esinw-P]
2 J2\r a r 4 2

2 2\ 2
-2T <Q}J——R)e cos y sin w + —g— A (%5) % sin?y sin2 u (252)

ZT;Z = - %<§ ]2<§)2[2 (g —9 P2 +<1 +;—) e sin?y sin w sin2 ui'
+rﬂ[l: —p——1>—(7+e2)+7(1-—e2);:' ]<>[68<p —92(7 +e2)

+14 Q+e2)l|.pP ~ é] R 26—(1+e2)L+(1—e2) —7—2. e sin2y sin w sin2 u
p 2 2 2\ 7 3 p2 Y
+2 T 232 (-1+e2)—(1—e2) T icosy - Q Rr? E—)Z<1—L> I'+3A <£—2P
) ? Y » AR ? r) 2
2
—%A(QbR>z§ +1> e sin?y sinwsinZu]> (253)
da — dm b 1 -e? R\? 4m 5 3 r p>
R S A T é’h(?)P“T{(f'ZE"?'
. 2 -
—%]2<§> {(1?7— %;——2%>P2—esin2ysin wsin2zJ
1 QO R? Q R\?
+ 5 F(T)é cosy — _<T) ) |:F+3A<7> P2J]> (254)

dy b 3 R\ . . m 3 R\? r . .
d_t_=ﬁ -—Z]2<7) sm2ysm2u+7[—2]2<7)<2— ;)stystu

)— sin2ysi02u]>

(255)

2
+2T )siny <esinwc052u +% sm2u A<QR

daQ’: 3]2<) cos}/sm u+
r

35, (B2~ — in?
yr Y [ 37, <r> (2 a) cos y sin“z
2 2\2
+2F<‘Q'TR )(% sin w sin 2 u + 2 g sin2u> +3A <97R> 'g c°s)’3iﬂ2"]> (256)
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The differemxial equations (251) to (256) have to be integrated with respect to the time or better
with respect to the true anomaly w using againthe relations

2

dt = dw §=1+ecosw , U=+ w

o~

of Keplerian motion on the right side of the above-mentiored differential equations. Instead of
doing this, time mean values of the variable terms over one revolution will be used on the right
side of eqs. (251) to (256) inorder to cancel out short-periodic perturbations. Using

dM=ndt= %rzdw , %=1+ecosw

there is

. 27 27
Sy s Kw)= 1 g sin am /_2_11 (1 +e cos w)v—2 sin dw
cos T2 cos ¥ C 2@bp™ * cos ¥
VO o

The evaluation of this integral for v, k as integers shows that

—_—

(cosr;:}w) ~0 (fork >p —230) ; (%):O (forv > 2)

and that
jcoskwy [1for/<=0
( r2 >— b. ' 0 k>0
1 for k=0
coskw\  n le 1
<“T> T hp P
~O m>1
2
(1+-;— for k=0
- e K=
COSKw) _ n
r4 T o hpr ?}e2 k=2
0 K> 2
1+g~e2 for k=0
3 /7 2
56K1+£-) k=1
COoS K w _ n
’5) T hpd 2—62 k=2
-513-63 k=3
0 k>3
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( l+3e?2+ = e*for k=0
Ze(1+7i)-e2) k=1
coskw\ 2 3e2<1+-é—e2> k=2
76 _E‘t
1
—2-23 k=3
-1}6—64 k=4
- 0 k> 4
1+562+—-1§—e4 for k=0
;eQ+§2—e2+%e4> k=1
5 e?
-2*62<1+—2—> k=2
(cos;(w _n :
r7 >_ hps Ie3<1+-18—e9 k=3
-%—e“ k=4
-31765 k=5
L 0 k>5

Due to u = @ + w, the additiontheorems

sin w » sin2u = — —1- cos LQow+3w)+ —1—— cos (2 w +w)

2 2

sin w cosZu:%sin(2a)+3w)— l sin (2w +w)

2
and the expression for the second harmonics

P, =—2l (3 sin? y sin?u~1) =~ l2 ll:(l - % sin2 y>+ %- sinzycos21ﬂ
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there is

cmz )- sin 2 @ (coer w);‘.—O for y>4

(ﬁ—zi)_COSZ CosZw #£0 for v 34

rv
P, 1 [ 3 ., 1 3 ., ‘cos 2 w
B [ ) oo (55
P sin w sinw cos 2 u 3 ., . cos 3 w\ [cos w\
—-——-smy v77—=_§81ny81n2w ( rV/ )

sin w stu sinw cos 2u cos 3 w co
<¥~———_——>= = cot 2(0 <—>= B cos 2 [( ) Q )J
rv r

# 0 for v23

These general formulas provide mow the following special time mean values applied to egs. (249) to

(254):
szu>= 7} nz e2sin2 @ <Slf12">= —i_ ;JEP— ¢*sin20
2
Cm2u) %b_”_ Q.,_ —-6€—>sin2a)

P, sinw 3 n . . P, sin w 9 =n e 2y | .
(J——>= 3 —F esin?y sin2w ; <Jr—5>= 16 753 e<1+€)sm2y sin 2 @

@
(%):-%b—[ % >Q— —sm)) —e sin ycos2aj
[<1+3e ze‘>(1—;sin2y>+%e2<1+%2)sin2ycos2mJ

T
o N
1]

l

“‘“l

sinwsinZu),_l n 9 L(sinwsin2u\ 1 =n e cos 92
S T aag e (e )y g eere
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sinwsin2uz) 3 g 1 e? 9
<___75_—_ _Z—p_i'! e<+3>cos ®

Substituting these time mean values into egs. (251) to (256) then, after reduction, the equations can
be written

7 2

G S G) T s @
0,
o 2

2= 2 7o) (5] wd ot e @

de? . ; b 3 ’ 2 9
s o DG CLRICI e

or
: 3
=g n ([J ) <P (13 + = e02> sin 2y, sin 2@ (259)
F = @ 1 - COS —11—?l Rzl-?i'2 ” 3
mT=O+ago y = 02]2T<—251n yt>+<-p—0> -
3 (RNt (13 +23 €2) 2
5 ]2<?0> + — (1— =~ sin? >+——— + e2) sin? Yo €0S 2 @
-4 T (Qb[ﬂ) cos y, - < ><1— el sm2y>]> (260)
0
thus

3 R\? 5 . m 3 RV
ol (e 3 () EnCI R D 3
: 5 1 . . 1
—(1+2 eoz) (2 -3 sm2y9+ i (13 + 23 eg) s1n2y0 sin 2w +—2—-e02 cos2y0 cos ZQ)J
2 g N2/
~or(2eory, - 2a (2= 3 sinzy9]> (261)
0
. . S 3 R\2
6=y b=M-n = yI—eZn(s ]2<70> 1- 2 sm2y) 0) 3(5-2yi-ep) -

2
l:% (1 + 1_ 22) (1 - i sinZyO) - %1‘- (13 + 37 eg) sinzy0 cos 2 w} +

8 o 2
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+ % A (g%) 2(1_ .g_ sin2 yo)}>+n0<7—;—o) ar <Qbiopo)2 (262)
y=-3 no<pﬂo) I, <’;_0>2eg sin 2y, sin2 o (263)

Gg =- n0<% I, <_‘;_)2 cos y, +<’§Q>[% ]2<‘—;C>2 cos ¥, [1 +2e2- L e2cos2 wJ
—2r (Qlef>_ g A <Qb§2)2cos y]> (264)

It is easy to integrate these equations where the orbital elements on the right side have their unper-
turbed constant values (subscript 0) except , which is a linear function of time ¢, namely

_ 3 RN' (o 5 .y (- 1) - ( )
W=+ 7y o ]2[7—0 T g Sy Ut =gt @ -t

The integrals

sin 2 . cos 2
cos 2w dt = —n® sin 20 dt =— —e2®
20 2w
non-rel. non-rel.

show that long-periodic perturbations appear inaddition to the secular perturbations.
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B. The Time-Dilatation Effect

Using the line element of eq. (222) the ratio of the proper time element dr to the local time ele-
ment dt is givenby

<§t1)2=<;%2=1 2 {1 (5 >P (sin ¢)+C) ) [ A(if—fpz (sin 4]
+0 (m2) - [1+ _277”_[1_]2<%2 P, (sin ¢J ]—v—2 + 2m F(QCR;) cos? ¢ _Z_?

;
or accurately enough

d 2 1 R\’ ,
G- - [ (e -

thus
d’_l_ﬂ 1+l .R_e2(1_351n2 ;_l”_f_l_fiﬂ_*g 26
TR 5 127 ¢J 7 2" o2 (263)

This formula, containing the invariant proper time element dr = ds/c, is now applied to an earth clock
(r=R, wv=QRcos ¢):

dr

m 1 R \? 2 1 Q2%R?cos%¢ Wy
'd—z‘E=1'——'E[l+§]2<—iz—> (1—3511’1(;5)}————‘7’—‘ =1 -

= const.
c?

Assuming the Earth’s surface an equipotential surface, the potential W
by its value at the equator, thus

, is constant and can be expressed

dr 1 1 /QR)N? m 1 1
AR 1+ 2 SNt IR - 5
7" Re[ i) ]2} 2 <c> - % {“2 o+ X}

. 2

(266)

where y =02 Rz /i has beenintroduced.

Applying eq. (265) to a satellite clock moving with the satellite in an arbitrary orbit

(sing = sin § = sin y, sinz ; v2/c2=m(2/r~ 1/ay) ; u=w+w) |
that yields

; .
Z_t’: 1- %‘iu i <§§ (1-3 sin2y sin2u)} - <3 - %0>

m
2 \r




then results

dr m R\ 2 2\ 12 3 .2
E= 1-Zo_ [3+]2 (;;— (l—eo) (1— ) sin Yo)] (267)

Dividing eq. (266) by eq. (267) gives for the relative difference in the time rates of a satellite clock
compared with a standard earth clock

dt m 1 1 m R,V < 3 .Zj
-]l - — = = — e 1—-e2)1/2{] —« =
R A T TR AL GVCC R S 2

3 R 1 R_\3 3 . 1 (268)
o R T S PR RN

Eq. (268) consists of three main terms. The first term (gravitational red shift and time dilatation) was
first given by Winterberg (1955, Ref. 26) and Singer (1956, Ref. 27). The former author also added the
last term due to the rotation of the Earth. The second term, due to the oblateness of the Earth, corrects
and generalizes the term given by Hoffmann (1957, Ref. 28) for circular orbits in the equatorial plane..

This paper will be concluded by listing certain constants of the Earth’s gravity field which appear
in the text, namely
c light velocity in vacuo, 299792.50 + 0.10 km/sec (K.D. Froome, 1958)
© gravity factor of the Earth, GM = 398613.52 km?J /sec? (Herrick, Baker, 1957)
R equatorial radius of the Earth, 6378.150 + 0.050 km (Baker, 1961)
I, oblateness constant of the Earth, (1082.190 + 0.023) x 10 (Kozai, 1960)
r inhomogeneity factor of the Earth, 0.3336= 1/3
A inhomogeneity factor of the Earth, — 0.0429 ~ — 3/70
m gravitational radius of the Earth, y/c2 = 0.4435 cm

m/R, potential energy factor of the Earth, 6.95377 x 10-10

Q angular veloc ity of the Earth’s rotation, 7.292115083 x 10-5 sec-!

QR, rotational velocity at the Earth’s equator 465.102 m/sec

QR2 angular momentum (per mass unit) at the Earth’s equator, 2.96649 x 10°m ?/sec
X centrifigal factor at the Earth’s equator, Q2 R3 /u = 3461.30 x 10-6

QR,/c rotational velocity ratio, 1.55142 x 106

«Q R, /c)? square of the rotational velocity ratio, 2.40691 x 10 12

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Redstone Arsenal, Huntsville, Alabama, May 22, 1962
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